Menu
July 19, 2019  |  

Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations.

Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ~8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruses.© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 19, 2019  |  

The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication.

The cultivation of rice in Africa dates back more than 3,000 years. Interestingly, African rice is not of the same origin as Asian rice (Oryza sativa L.) but rather is an entirely different species (i.e., Oryza glaberrima Steud.). Here we present a high-quality assembly and annotation of the O. glaberrima genome and detailed analyses of its evolutionary history of domestication and selection. Population genomics analyses of 20 O. glaberrima and 94 Oryza barthii accessions support the hypothesis that O. glaberrima was domesticated in a single region along the Niger river as opposed to noncentric domestication events across Africa. We detected evidence for artificial selection at a genome-wide scale, as well as with a set of O. glaberrima genes orthologous to O. sativa genes that are known to be associated with domestication, thus indicating convergent yet independent selection of a common set of genes during two geographically and culturally distinct domestication processes.


July 19, 2019  |  

Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability.

Recurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, autism and epilepsy. To gain insight into the instability of this region, we sequenced it in affected individuals, normal individuals and nonhuman primates. We discovered five structural configurations of the human chromosome 15q13.3 region ranging in size from 2 to 3 Mb. These configurations arose recently (~0.5-0.9 million years ago) as a result of human-specific expansions of segmental duplications and two independent inversion events. All inversion breakpoints map near GOLGA8 core duplicons-a ~14-kb primate-specific chromosome 15 repeat that became organized into larger palindromic structures. GOLGA8-flanked palindromes also demarcate the breakpoints of recurrent 15q13.3 microdeletions, the expansion of chromosome 15 segmental duplications in the human lineage and independent structural changes in apes. The significant clustering (P = 0.002) of breakpoints provides mechanistic evidence for the role of this core duplicon and its palindromic architecture in promoting the evolutionary and disease-related instability of chromosome 15.


July 19, 2019  |  

Evolution of mosquito preference for humans linked to an odorant receptor.

Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A ‘domestic’ form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, ‘forest’ form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.


July 19, 2019  |  

Conformation dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.

Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation specific antibodies. We used mutational scanning by cell-surface display to screen 1,341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single molecule real time gene sequencing was used to quantify enrichment of mutants, returning on average 26,000 high quality full-length reads for each screened population. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity. Copyright © 2014. Published by Elsevier Ltd.


July 19, 2019  |  

PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations.

Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high.We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki-Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants.The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology.


July 19, 2019  |  

Intrahost dynamics of antiviral resistance in influenza a virus reflect complex patterns of segment linkage, reassortment, and natural selection.

Resistance following antiviral therapy is commonly observed in human influenza viruses. Although this evolutionary process is initiated within individual hosts, little is known about the pattern, dynamics, and drivers of antiviral resistance at this scale, including the role played by reassortment. In addition, the short duration of human influenza virus infections limits the available time window in which to examine intrahost evolution. Using single-molecule sequencing, we mapped, in detail, the mutational spectrum of an H3N2 influenza A virus population sampled from an immunocompromised patient who shed virus over a 21-month period. In this unique natural experiment, we were able to document the complex dynamics underlying the evolution of antiviral resistance. Individual resistance mutations appeared weeks before they became dominant, evolved independently on cocirculating lineages, led to a genome-wide reduction in genetic diversity through a selective sweep, and were placed into new combinations by reassortment. Notably, despite frequent reassortment, phylogenetic analysis also provided evidence for specific patterns of segment linkage, with a strong association between the hemagglutinin (HA)- and matrix (M)-encoding segments that matches that previously observed at the epidemiological scale. In sum, we were able to reveal, for the first time, the complex interaction between multiple evolutionary processes as they occur within an individual host.Understanding the evolutionary forces that shape the genetic diversity of influenza virus is crucial for predicting the emergence of drug-resistant strains but remains challenging because multiple processes occur concurrently. We characterized the evolution of antiviral resistance in a single persistent influenza virus infection, representing the first case in which reassortment and the complex patterns of drug resistance emergence and evolution have been determined within an individual host. Deep-sequence data from multiple time points revealed that the evolution of antiviral resistance reflects a combination of frequent mutation, natural selection, and a complex pattern of segment linkage and reassortment. In sum, these data show how immunocompromised hosts may help reveal the drivers of strain emergence. Copyright © 2015 Rogers et al.


July 19, 2019  |  

Identification of a common risk haplotype for canine idiopathic epilepsy in the ADAM23 gene.

Idiopathic epilepsy is a common neurological disease in human and domestic dogs but relatively few risk genes have been identified to date. The seizure characteristics, including focal and generalised seizures, are similar between the two species, with gene discovery facilitated by the reduced genetic heterogeneity of purebred dogs. We have recently identified a risk locus for idiopathic epilepsy in the Belgian Shepherd breed on a 4.4 megabase region on CFA37.We have expanded a previous study replicating the association with a combined analysis of 157 cases and 179 controls in three additional breeds: Schipperke, Finnish Spitz and Beagle (pc?=?2.9e-07, pGWAS?=?1.74E-02). A targeted resequencing of the 4.4 megabase region in twelve Belgian Shepherd cases and twelve controls with opposite haplotypes identified 37 case-specific variants within the ADAM23 gene. Twenty-seven variants were validated in 285 cases and 355 controls from four breeds, resulting in a strong replication of the ADAM23 locus (praw?=?2.76e-15) and the identification of a common 28 kb-risk haplotype in all four breeds. Risk haplotype was present in frequencies of 0.49-0.7 in the breeds, suggesting that ADAM23 is a low penetrance risk gene for canine epilepsy.These results implicate ADAM23 in common canine idiopathic epilepsy, although the causative variant remains yet to be identified. ADAM23 plays a role in synaptic transmission and interacts with known epilepsy genes, LGI1 and LGI2, and should be considered as a candidate gene for human epilepsies.


July 19, 2019  |  

Assembly and diploid architecture of an individual human genome via single-molecule technologies.

We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.


July 19, 2019  |  

Emergence of ebola virus escape variants in infected nonhuman primates treated with the MB-003 antibody cocktail.

MB-003, a plant-derived monoclonal antibody cocktail used effectively in treatment of Ebola virus infection in non-human primates, was unable to protect two of six animals when initiated 1 or 2 days post-infection. We characterized a mechanism of viral escape in one of the animals, after observation of two clusters of genomic mutations that resulted in five nonsynonymous mutations in the monoclonal antibody target sites. These mutations were linked to a reduction in antibody binding and later confirmed to be present in a viral isolate that was not neutralized in vitro. Retrospective evaluation of a second independent study allowed the identification of a similar case. Four SNPs in previously identified positions were found in this second fatality, suggesting that genetic drift could be a potential cause for treatment failure. These findings highlight the importance selecting different target domains for each component of the cocktail to minimize the potential for viral escape. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


July 19, 2019  |  

The dentin phosphoprotein repeat region and inherited defects of dentin.

Nonsyndromic dentin defects classified as type II dentin dysplasia and types II and III dentinogenesis imperfecta are caused by mutations in DSPP (dentin sialophosphoprotein). Most reported disease-causing DSPP mutations occur within the repetitive DPP (dentin phosphoprotein) coding sequence. We characterized the DPP sequences of five probands with inherited dentin defects using single molecule real-time (SMRT) DNA sequencing. Eight of the 10 sequences matched previously reported DPP length haplotypes and two were novel. Alignment with known DPP sequences showed 32 indels arranged in 36 different patterns. Sixteen of the 32 indels were not represented in more than one haplotype. The 25 haplotypes with confirmed indels were aligned to generate a tree that describes how the length variations might have evolved. Some indels were independently generated in multiple lines. A previously reported disease-causing DSPP mutation in Family 1 was confirmed and its position clarified (c.3135delC; p.Ser1045Argfs*269). A novel frameshift mutation (c.3504_3508dup; p.Asp1170Alafs*146) caused the dentin defects in Family 2. A COL1A2 (c.2027G>A or p.Gly676Asp) missense mutation, discovered by whole-exome sequencing, caused the dentin defects in Family 3. We conclude that SMRT sequencing characterizes the DPP repeat region without cloning and can improve our understanding of normal and pathological length variations in DSPP alleles.


July 19, 2019  |  

Genetic variation and the de novo assembly of human genomes.

The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation.


July 19, 2019  |  

Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine.

The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus.We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination.In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy.These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).


July 19, 2019  |  

SMRT Sequencing for parallel analysis of multiple targets and accurate SNP phasing.

Single-molecule real-time (SMRT) sequencing generates much longer reads than other widely used next-generation (next-gen) sequencing methods, but its application to whole genome/exome analysis has been limited. Here, we describe the use of SMRT sequencing coupled with barcoding to simultaneously analyze one or a small number of genomic targets derived from multiple sources. In the budding yeast system, SMRT sequencing was used to analyze strand-exchange intermediates generated during mitotic recombination and to analyze genetic changes in a forward mutation assay. The general barcoding-SMRT approach was then extended to diffuse large B-cell lymphoma primary tumors and cell lines, where detected changes agreed with prior Illumina exome sequencing. A distinct advantage afforded by SMRT sequencing over other next-gen methods is that it immediately provides the linkage relationships between SNPs in the target segment sequenced. The strength of our approach for mutation/recombination studies (as well as linkage identification) derives from its inherent computational simplicity coupled with a lack of reliance on sophisticated statistical analyses. Copyright © 2015 Guo et al.


July 19, 2019  |  

Fc? receptors: genetic variation, function, and disease.

Fc? receptors (Fc?Rs) are key immune receptors responsible for the effective control of both humoral and innate immunity and are central to maintaining the balance between generating appropriate responses to infection and preventing autoimmunity. When this balance is lost, pathology results in increased susceptibility to cancer, autoimmunity, and infection. In contrast, optimal Fc?R engagement facilitates effective disease resolution and response to monoclonal antibody immunotherapy. The underlying genetics of the Fc?R gene family are a central component of this careful balance. Complex in humans and generated through ancestral duplication events, here we review the evolution of the gene family in mammals, the potential importance of copy number, and functionally relevant single nucleotide polymorphisms, as well as discussing current approaches and limitations when exploring genetic variation in this region. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.