Discover the benefits of HiFi reads and learn how highly accurate long-read sequencing provides a single technology solution across a range of applications.
Learn how Single Molecule, Real-Time (SMRT) Sequencing and the Sequel IIe System and will accelerate your research by delivering highly accurate long reads to provide the most comprehensive view of genomes, transcriptomes and epigenomes.
Dan Geraghty explains that while there have been decades’ worth of studies associating the genetics of the major histocompatibility complex (MHC), and the highly polymorphic HLA class 1 and 2 genes, we still haven’t found the key mutations for a variety of different autoimmune diseases such as type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and others. Enormous amounts of linkage disequilibrium in these regions are one factor, as is getting information in phase, so larger stretches of sequence are needed. Recently Geraghty has begun using SMRT Technology with hopes of drilling down to the causal genetics.
In this webinar, the presenters describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with PacBio’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase, contiguous regions. They demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the adjacent intronic regions. When combined with SMRT Sequencing, multi-kilobase genomic regions can be phased and variants, including complex structural variants, can be detected in exons, introns and intergenic regions.
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.
Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.
Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.
This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes. This tutorial covers features of SMRT Link v5.0.0.
At PAG 2017, Rockefeller University’s Erich Jarvis offered an in-depth comparison of methods for generating highly contiguous genome assemblies, using hummingbird as the basis to evaluate a number of sequencing and scaffolding technologies. Analyses include gene content, error rate, chromosome metrics, and more. Plus: a long-read look at four genes associated with vocal learning.
SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.
In a talk at AGBT 2017, Histogenetics CEO Nezih Cereb reported on how SMRT Sequencing is allowing his team to produce full-length, phased sequences for HLA alleles, which are important for matching organ transplants to recipients. The company is typing thousands of samples per day on their PacBio RS II systems and their new Sequel System. Cereb noted that SMRT Sequencing is unique in its ability to reliably phase mutations in the HLA alleles without imputation. Cereb concluded with his plans to use this approach for other complex regions, such as KIR, and announced their continued increasing HLA typing capacity…
Human MHC class I genes HLA-A, -B, -C, and class II genes HLA -DR, -DQ, and -DP play a critical role in the immune system as primary factors responsible for organ transplant rejection. Additionally, the HLA genes are important targets for clinical and drug sensitivity research because of their direct or linkage-based association with several diseases, including cancer, and autoimmune diseases. HLA genes are highly polymorphic, and their diversity originates from exonic combinations as well as recombination events. With full-length gene sequencing, a significant increase of new alleles in the HLA database is expected, stressing the need for high-resolution sequencing.…
In this PAG 2018 presentation, John Williams of University of Adelaide, presents research on using PacBio SMRT Sequencing to explore the genetic origins of cattle subspecies, Angus (Bos taurus taurus) and Brahman (Bos taurus indicus). He shares RNA sequencing data using the PacBio Iso-Seq method to compare transcriptomes and phase allelic expression and describes how the IsoPhase technique enables evaluation of SNPs through transcriptome mapping back to the single genome of a cross-bred individual. Using a genomic and transcriptomic approach, two high-quality genomes from a single individual and gene isoforms specific to each subspecies are being identified.
In this ASHG 2017 presentation, Charles Lee of The Jackson Laboratory for Genomic Medicine presented work from the Human Genome Structural Variation Consortium. He shared data from efforts to utilize multiple platforms for the comprehensive discovery of structural variations—including insertions, deletions, inversions and mobile element insertions—in individual genomes. By combining various technologies, this research identified 7 times more structural variation per person than was previously known to exist.