X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Variant Phasing and Haplotypic Expression from Single-molecule Long-read Sequencing in Maize

Haplotype phasing of genetic variants is important for interpretation of the maize genome, population genetic analysis, and functional genomic analysis of allelic activity. Accordingly, accurate methods for phasing full-length isoforms are essential for functional genomics study. In this study, we performed an isoform-level phasing study in maize, using two inbred lines and their reciprocal crosses, based on single-molecule full-length cDNA sequencing. To phase and analyze full-length transcripts between hybrids and parents, we developed a tool called IsoPhase. Using this tool, we validated the majority of SNPs called against matching short read data and identified cases of allele-specific, gene-level, and isoform-level…

Read More »

Tuesday, April 21, 2020

Potential of TLR-gene diversity in Czech indigenous cattle for resistance breeding as revealed by hybrid sequencing

A production herd of Czech Simmental cattle (Czech Red Pied, CRP), the conserved subpopulation of this breed, and the ancient local breed Czech Red cattle (CR) were screened for diversity in the antibacterial toll-like receptors (TLRs), which are members of the innate immune system. Polymerase chain reaction (PCR) amplicons of TLR1, TLR2, TLR4, TLR5, and TLR6 from pooled DNA samples were sequenced with PacBio technology, with 3–5×?coverage per gene per animal. To increase the reliability of variant detection, the gDNA pools were sequenced in parallel with the Illumina X-ten platform at low coverage (60× per gene). The diversity in conserved…

Read More »

Tuesday, April 21, 2020

Short communication: Identification of the pseudoautosomal region in the Hereford bovine reference genome assembly ARS-UCD1.2.

In cattle, the X chromosome accounts for approximately 3 and 6% of the genome in bulls and cows, respectively. In spite of the large size of this chromosome, very few studies report analysis of the X chromosome in genome-wide association studies and genomic selection. This lack of genetic interrogation is likely due to the complexities of undertaking these studies given the hemizygous state of some, but not all, of the X chromosome in males. The first step in facilitating analysis of this gene-rich chromosome is to accurately identify coordinates for the pseudoautosomal boundary (PAB) to split the chromosome into a…

Read More »

Tuesday, April 21, 2020

A Look to the Future: Pharmacogenomics and Data Technologies of Today and Tomorrow

The ability to measure chemical and physiologic states in tandem with good experimental design has enabled the discovery and characterization of a plethora of gene–drug interactions. Recent advances in methods to measure organic molecules and phenotypes, describe clinical states, and reason across federated data offer an increasingly precise set of technologies for pharmacogenomics discovery and clinical translation.

Read More »

Tuesday, April 21, 2020

Multi-platform discovery of haplotype-resolved structural variation in human genomes.

The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (

Read More »

Tuesday, April 21, 2020

Haplotype-aware diplotyping from noisy long reads.

Current genotyping approaches for single-nucleotide variations rely on short, accurate reads from second-generation sequencing devices. Presently, third-generation sequencing platforms are rapidly becoming more widespread, yet approaches for leveraging their long but error-prone reads for genotyping are lacking. Here, we introduce a novel statistical framework for the joint inference of haplotypes and genotypes from noisy long reads, which we term diplotyping. Our technique takes full advantage of linkage information provided by long reads. We validate hundreds of thousands of candidate variants that have not yet been included in the high-confidence reference set of the Genome-in-a-Bottle effort.

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: Going beyond the $1,000 genome? – the future of high quality de novo human genomes, epigenomes and transcriptomes?

Jonas Korlach, Chief Scientific Officer at PacBio, discussed the technology waves that have followed the initial human genome sequencing project, where we are today, and where we are going. Today, we are in what Korlach calls the 4th wave, where more comprehensive whole-genome re-sequencing is occurring, and we are nearing the 5th, when we will actually be able to free ourselves from reference genomes and sequence everything de novo.

Read More »

Monday, March 30, 2020

ASHI PacBio Workshop: KIR haplotypes – The long and short of it

KIR haplotypes can be determined by physical and computational and statistical methods. Martin Maiers from National Bone Marrow Donor Program (NMDP) presents a summary of their work to determine KIR genomic content for use in clinical transplantation, outcomes of HLA sequencing of KIR region across a variety of methods and shares their data from recent experiments using PacBio single-molecule sequencing of fosmid libraries.

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: Of reference genomes and precious metals

Rick Wilson, Director of the McDonnell Genome Institute at Washington University in St. Louis titled his talk “Of reference genomes and precious metals” and walked the audience through definitions and standards for the various quality levels for de novo assembled human genomes, e.g., platinum, gold, and silver. He noted that this was a good topic for this session because of the important role PacBio has played in the community’s work to create reference-grade genomes. For example, PacBio technology has enabled them to sequence additional genomes (CHM1, CHM13) to a very high quality level. Although these sequences were essential for further…

Read More »

Monday, March 30, 2020

ASHG Virtual Poster: Long range phasing of cardiac disease genes using new long read sequencing technologies

Alex Dainis, a graduate student in Euan Ashley’s lab at Stanford University, presents her ASHG 2015 poster on haplotyping for genes linked to hypertrophic cardiomyopathy. Using the Iso-Seq method with SMRT Sequencing, she sequenced full transcripts of two genes of interest, generating data on 150 different isoforms. Rare variants, which could not be found with other technologies, were associated with haplotypes.

Read More »

Monday, March 30, 2020

AGBT Virtual Poster: Insight into MHC and KIR genomic regions associated with autoimmune disease

Dan Geraghty from the Fred Hutchinson Cancer Research Center presents his AGBT poster on a new PacBio-based solution to sequence extended genomic regions — in this case, KIR and MHC, two of the most variable regions of the human genome. He reports data revealing for the first time regions that may be associated with autoimmune diseases such as diabetes, rheumatoid arthritis, and multiple sclerosis, and also shows that sequences were phased, complete, and highly accurate.

Read More »

1 2 3 11

Subscribe for blog updates:

Archives