X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Tryptorubin A: A polycyclic peptide from a fungus-derived Streptomycete.

Fungus-growing ants engage in complex symbiotic relationships with their fungal crop, specialized fungal pathogens, and bacteria that provide chemical defenses. In an effort to understand the evolutionary origins of this multilateral system, we investigated bacteria isolated from fungi. One bacterial strain (Streptomyces sp. CLI2509) from the bracket fungus Hymenochaete rubiginosa, produced an unusual peptide, tryptorubin A, which contains heteroaromatic links between side chains that give it a rigid polycyclic globular structure. The three-dimensional structure was determined by NMR and MS, including a (13)C-(13)C COSY of isotopically enriched material, degradation, derivatives, and computer modeling. Whole genome sequencing identified a likely pair…

Read More »

Sunday, July 7, 2019

Simultaneous production of Anabaenopeptins and Namalides by the cyanobacterium Nostoc sp. CENA543.

Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc…

Read More »

Sunday, July 7, 2019

Complete genome sequencing and diversity analysis of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10

[Objective] The aim of this study was to study the diversity of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10. [Methods] Ion exchange chromatography, genome sequencing and heterologous expression were used to study the diversity of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10. [Results] Stenotrophomonas maltophilia OUC_Est10 could secret a wide range of lipolytic enzymes (lipases and esterases) as revealed by ion exchange chromatography. The complete genome is of 4668743 bp in length, with an average GC content of 66.25%. Genome annotation indicated the presence of 33 candidate genes whose products possess the predicted lipolytic enzyme activities. Analysis of catalytic features was carried…

Read More »

Sunday, July 7, 2019

Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the a-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform…

Read More »

Sunday, July 7, 2019

Use of genomic approaches in understanding the role of Actinomycetes as PGP in grain legumes

The advancement in molecular technologies has given a breakthrough to explore the untapped and novel microbial isolates for characterization in every aspect as we can consider microbes as an important primary natural store house for key secondary metabolites and enzymes. Actinomycetes are the most fruitful source of microorganisms for all types of bioactive secondary metabolites, including agroactive-antibiotic molecules that are best recognized and most valuable for their role in agriculture and industries. In agriculture, actinomycetes are used as biocontrol agents against some pests and pathogenic organisms as well as plant growth-promoting (PGP) agents for crops. Use of different molecular methods,…

Read More »

Sunday, July 7, 2019

Identification of the fluvirucin B2 (Sch 38518) biosynthetic gene cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate specificity of the ß-amino acid selective adenylating enzyme FlvN.

Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the ß-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the ß-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic ß-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a ß-amino acid substrate. FlvN showed strong preference for l-aspartate over other…

Read More »

Sunday, July 7, 2019

Genomics-inspired discovery of three antibacterial active metabolites, aurantinins B, C, and D from compost-associated Bacillus subtilis fmb60.

Fmb60 is a wild-type Bacillus subtilis isolated from compost with significant broad-spectrum antimicrobial activities. Two novel PKS clusters were recognized in the genome sequence of fmb60, and then three polyene antibiotics, aurantinins B, C, and D, 1-3, were obtained by bioactivity-guided isolation from the fermentation of fmb60. The structures of aurantinins B-D were elucidated by LC-HRMS and NMR data analysis. Aurantinins C and D were identified as new antimicrobial compounds. The three aurantinins showed significant activity against multidrug-resistant Staphylococcus aureus and Clostridium sporogenes. However, aurantinins B-D did not exhibit any cytotoxicity (IC50 > 100 µg/mL) against LO2 and Caco2 cell…

Read More »

Sunday, July 7, 2019

The ‘gifted’ actinomycete Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.

Read More »

Sunday, July 7, 2019

Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective.

Combinatorial biosynthesis of novel secondary metabolites derived from nonribosomal peptide synthetases (NRPSs) has been in slow development for about a quarter of a century. Progress has been hampered by the complexity of the giant multimodular multienzymes. More recently, advances have been made on understanding the chemical and structural biology of these complex megaenzymes, and on learning the design rules for engineering functional hybrid enzymes. In this perspective, I address what has been learned about successful engineering of complex lipopeptides related to daptomycin, and discuss how synthetic biology and microbial genome mining can converge to broaden the scope and enhance the…

Read More »

1 2 3

Subscribe for blog updates:

Archives