April 21, 2020  |  

Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit

CRISPR-Cas9 and BEs system are poised to become the gene editing tool of choice in clinical contexts, however large fragment deletion was found in Cas9-mediated mutation cells without animal level validation. By analyzing 16 gene-edited rabbit lines (including 112 rabbits) generated using SpCas9, BEs, xCas9 and xCas9-BEs with long-range PCR genotyping and long-read sequencing by PacBio platform, we show that extending thousands of bases fragment deletions in single-guide RNA/Cas9 and xCas9 system mutation rabbit, but few large deletions were found in BEs-induced mutation rabbits. We firstly validated that no large fragment deletion induced by BEs system at animal level, suggesting that BE systems can be beneficial tools for the further development of highly accurate and secure gene therapy for the clinical treatment of human genetic disorders


April 21, 2020  |  

Defining transgene insertion sites and off-target effects of homology-based gene silencing informs the use of functional genomics tools in Phytophthora infestans.

DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spreads to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5′ ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for twelve different gene targets indicated that neighbors within 500-nt were often co-silenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, cis-spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not co-silenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.


April 21, 2020  |  

Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation.

Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~?1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.


April 21, 2020  |  

Collateral damage and CRISPR genome editing.

The simplicity and the versatility of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR-Cas) systems have enabled the genetic modification of virtually every organism and offer immense therapeutic potential for the treatment of human disease. Although these systems may function efficiently within eukaryotic cells, there remain concerns about the accuracy of Cas endonuclease effectors and their use for precise gene editing. Recently, two independent reports investigating the editing accuracy of the CRISPR-Cas9 system were published by separate groups at the Wellcome Sanger Institute; our study-Iyer and colleagues [1]-defined the landscape of off-target mutations, whereas the other by Kosicki and colleagues [2] detailed the existence of on-target, potentially deleterious deletions. Although both studies found evidence of large on-target CRISPR-induced deletions, they reached seemingly very different conclusions.


April 21, 2020  |  

Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication.

L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3′-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Precise therapeutic gene correction by a simple nuclease-induced double-stranded break.

Current programmable nuclease-based methods (for example, CRISPR-Cas9) for the precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires the co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here we show that disease-causing frameshift mutations that result from microduplications can be efficiently reverted to the wild-type sequence simply by generating a DNA double-stranded break near the centre of the duplication. We demonstrate this in patient-derived cell lines for two diseases: limb-girdle muscular dystrophy type 2G (LGMD2G)1 and Hermansky-Pudlak syndrome type 1 (HPS1)2. Clonal analysis of inducible pluripotent stem (iPS) cells from the LGMD2G cell line, which contains a mutation in TCAP, treated with the Streptococcus pyogenes Cas9 (SpCas9) nuclease revealed that about 80% contained at least one wild-type TCAP allele; this correction also restored TCAP expression in LGMD2G iPS cell-derived myotubes. SpCas9 also efficiently corrected the genotype of an HPS1 patient-derived B-lymphoblastoid cell line. Inhibition of polyADP-ribose polymerase 1 (PARP-1) suppressed the nuclease-mediated collapse of the microduplication to the wild-type sequence, confirming that precise correction is mediated by the microhomology-mediated end joining (MMEJ) pathway. Analysis of editing by SpCas9 and Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a) at non-pathogenic 4-36-base-pair microduplications within the genome indicates that the correction strategy is broadly applicable to a wide range of microduplication lengths and can be initiated by a variety of nucleases. The simplicity, reliability and efficacy of this MMEJ-based therapeutic strategy should permit the development of nuclease-based gene correction therapies for a variety of diseases that are associated with microduplications.


April 21, 2020  |  

Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes.

We have isolated several Osiaa23 rice mutants with different knockout genotypes, resulting in different phenotypes, which suggested that different genetic backgrounds or mutation types influence gene function. The Auxin/Indole-3-Acetic Acid (Aux/IAA) gene family performs critical roles in auxin signal transduction in plants. In rice, the gene OsIAA23 (Os06t0597000) is known to affect development of roots and shoots, but previous knockouts in OsIAA23 have been sterile and difficult for research continuously. Here, we isolate new Osiaa23 mutants using the CRISPR/Cas9 system in japonica (Wuyunjing24) and indica (Kasalath) rice, with extensive genome re-sequencing to confirm the absence of off-target effects. In Kasalath, mutants with a 13-amino acid deletion showed profoundly greater dwarfing, lateral root developmental disorder, and fertility deficiency, relative to mutants with a single amino acid deletion, demonstrating that those 13 amino acids in Kasalath are essential to gene function. In Wuyunjing24, we predicted that mutants with a single base-pair frameshift insertion would experience premature termination and strong phenotypic defects, but instead these lines exhibited negligible phenotypic difference and normal fertility. Through RNA-seq, we show here that new mosaic transcripts of OsIAA23 were produced de novo, which circumvented the premature termination and thereby preserved the wild-type phenotype. This finding is a notable demonstration in plants that mutants can mask loss of function CRISPR/Cas9 editing of the target gene through de novo changes in alternative splicing.


April 21, 2020  |  

Smashing Barriers in Biolistic Plant Transformation.

A foundation of modern biotechnology is the ability to stably introduce foreign DNA into an organism. The two most widely used methods, Agrobacterium-mediated transformation and biolistics, are both steeped in a rich history of creative exploration into the molecular unknown. Agrobacterium research accelerated in the early 1970s, particularly with the discovery of the large Ti (tumor-inducing) plasmid of Agrobacterium that contained a region of transfer DNA (T-DNA). Culturing plant calli in autoclaved jelly jars, and long before the advent of PCR, Southern blots were first used to show that T-DNA fragments could stably integrate into the nuclear genome (Chilton et al., 1980; Chilton, 2001). On the other hand, the first manufactured biolistic “gene gun” was an actual gun; it shot a blank .22 caliber cartridge loaded with DNA-coated tungsten shards to integrate foreign DNA into the nuclear genome. While it has long been known that biolistic transformation violently integrates DNA in a largely random, unpredictable and imprecise way, the cellular mechanisms of damage repair and successful integration remain a complicated issue to disentangle.


April 21, 2020  |  

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.


April 21, 2020  |  

Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site.

The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse’s whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.


April 21, 2020  |  

Programmable mutually exclusive alternative splicing for generating RNA and protein diversity.

Alternative splicing performs a central role in expanding genomic coding capacity and proteomic diversity. However, programming of splicing patterns in engineered biological systems remains underused. Synthetic approaches thus far have predominantly focused on controlling expression of a single protein through alternative splicing. Here, we describe a modular and extensible platform for regulating four programmable exons that undergo a mutually exclusive alternative splicing event to generate multiple functionally-distinct proteins. We present an intron framework that enforces the mutual exclusivity of two internal exons and demonstrate a graded series of consensus sequence elements of varying strengths that set the ratio of two mutually exclusive isoforms. We apply this framework to program the DNA-binding domains of modular transcription factors to differentially control downstream gene activation. This splicing platform advances an approach for generating diverse isoforms and can ultimately be applied to program modular proteins and increase coding capacity of synthetic biological systems.


April 21, 2020  |  

Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses.

Geminiviruses cause damaging diseases in several important crop species. However, limited progress has been made in developing crop varieties resistant to these highly diverse DNA viruses. Recently, the bacterial CRISPR/Cas9 system has been transferred to plants to target and confer immunity to geminiviruses. In this study, we use CRISPR-Cas9 interference in the staple food crop cassava with the aim of engineering resistance to African cassava mosaic virus, a member of a widespread and important family (Geminiviridae) of plant-pathogenic DNA viruses.Our results show that the CRISPR system fails to confer effective resistance to the virus during glasshouse inoculations. Further, we find that between 33 and 48% of edited virus genomes evolve a conserved single-nucleotide mutation that confers resistance to CRISPR-Cas9 cleavage. We also find that in the model plant Nicotiana benthamiana the replication of the novel, mutant virus is dependent on the presence of the wild-type virus.Our study highlights the risks associated with CRISPR-Cas9 virus immunity in eukaryotes given that the mutagenic nature of the system generates viral escapes in a short time period. Our in-depth analysis of virus populations also represents a template for future studies analyzing virus escape from anti-viral CRISPR transgenics. This is especially important for informing regulation of such actively mutagenic applications of CRISPR-Cas9 technology in agriculture.


October 23, 2019  |  

Altering tropism of rAAV by directed evolution.

Directed evolution represents an attractive approach to derive AAV capsid variants capable of selectively infect specific tissue or cell targets. It involves the generation of an initial library of high complexity followed by cycles of selection during which the library is progressively enriched for target-specific variants. Each selection cycle consists of the following: reconstitution of complete AAV genomes within plasmid molecules; production of virions for which each particular capsid variant is matched with the particular capsid gene encoding it; recovery of capsid gene sequences from target tissue after systemic administration. Prevalent variants are then analyzed and evaluated.


October 23, 2019  |  

Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms.

CRISPR-Cas9-mediated genome editing has recently been adapted for Leishmania spp. parasites, the causative agents of human leishmaniasis. We have optimized this genome-editing tool by selecting for cells with CRISPR-Cas9 activity through cotargeting the miltefosine transporter gene; mutation of this gene leads to miltefosine resistance. This cotargeting strategy integrated into a triple guide RNA (gRNA) expression vector was used to delete all 11 copies of the A2 multigene family; this was not previously possible with the traditional gene-targeting method. We found that the Leishmania donovani rRNA promoter is more efficient than the U6 promoter in driving gRNA expression, and sequential transfections of the oligonucleotide donor significantly eased the isolation of edited mutants. A gRNA and Cas9 coexpression vector was developed that was functional in all tested Leishmania species, including L. donovani, L. major, and L. mexicana. By simultaneously targeting sites from two different chromosomes, all four types of targeted chromosomal translocations were generated, regardless of the polycistronic transcription direction from the parent chromosomes. It was possible to use this CRISPR system to create a single conserved amino acid substitution (A189G) mutation for both alleles of RAD51, a DNA recombinase involved in homology-directed repair. We found that RAD51 is essential for L. donovani survival based on direct observation of the death of mutants with both RAD51 alleles disrupted, further confirming that this CRISPR system can reveal gene essentiality. Evidence is also provided that microhomology-mediated end joining (MMEJ) plays a major role in double-strand DNA break repair in L. donovani. IMPORTANCELeishmania parasites cause human leishmaniasis. To accelerate characterization of Leishmania genes for new drug and vaccine development, we optimized and simplified the CRISPR-Cas9 genome-editing tool for Leishmania. We show that co-CRISPR targeting of the miltefosine transporter gene and serial transfections of an oligonucleotide donor significantly eased isolation of edited mutants. This cotargeting strategy was efficiently used to delete all 11 members of the A2 virulence gene family. This technical advancement is valuable, since there are many gene clusters and supernumerary chromosomes in the various Leishmania species and isolates. We simplified this CRISPR system by developing a gRNA and Cas9 coexpression vector which could be used to delete genes in various Leishmania species. This CRISPR system could also be used to generate specific chromosomal translocations, which will help in the study of Leishmania gene expression and transcription control. This study also provides new information about double-strand DNA break repair mechanisms in Leishmania.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.