Transcription activator-like effector nucleases (TALENs) have become a powerful tool for genome editing due to the simple code linking the amino acid sequences of their DNA-binding domains to TALEN nucleotide targets. While the initial TALEN-design guidelines are very useful, user-friendly tools defining optimal TALEN designs for robust genome editing need to be developed. Here we evaluated existing guidelines and developed new design guidelines for TALENs based on 205 TALENs tested, and established the scoring algorithm for predicting TALEN activity (SAPTA) as a new online design tool. For any input gene of interest, SAPTA gives a ranked list of potential TALEN…
Designer nucleases have been successfully employed to modify the genomes of various model organisms and human cell types. While the specificity of zinc-finger nucleases (ZFNs) and RNA-guided endonucleases has been assessed to some extent, little data are available for transcription activator-like effector-based nucleases (TALENs). Here, we have engineered TALEN pairs targeting three human loci (CCR5, AAVS1 and IL2RG) and performed a detailed analysis of their activity, toxicity and specificity. The TALENs showed comparable activity to benchmark ZFNs, with allelic gene disruption frequencies of 15-30% in human cells. Notably, TALEN expression was overall marked by a low cytotoxicity and the absence…
Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because…
Short hairpin (sh)RNAs delivered by recombinant adeno-associated viruses (rAAVs) are valuable tools to study gene function in vivo and a promising gene therapy platform. Our data show that incorporation of shRNA transgenes into rAAV constructs reduces vector yield and produces a population of truncated and defective genomes. We demonstrate that sequences with hairpins or hairpin-like structures drive the generation of truncated AAV genomes through a polymerase redirection mechanism during viral genome replication. Our findings reveal the importance of genomic secondary structure when optimizing viral vector designs. We also discovered that shDNAs could be adapted to act as surrogate mutant inverted terminal…
The applications of probiotics are significant and thus resulted in need of genome analysis of probiotic strains. Various omics methods and systems biology approaches enables us to understand and optimize the metabolic processes. These techniques have increased the researcher’s attention towards gut microbiome and provided a new source for the revelation of uncharacterized biosynthetic pathways which enables novel metabolic engineering approaches. In recent years, the broad and quantitative analysis of modified strains relies on systems biology tools such as in silico design which are commonly used methods for improving strain performance. The genetic manipulation of probiotic microorganisms is crucial for…
Skeletal muscle is ideal for passive vaccine administration as it is easily accessible by intramuscular injection. Recombinant adeno-associated virus (rAAV) vectors are in consideration for passive vaccination clinical trials for HIV and influenza. However, greater human skeletal muscle transduction is needed for therapeutic efficacy than is possible with existing serotypes. To bioengineer capsids with therapeutic levels of transduction, we utilized a directed evolution approach to screen libraries of shuffled AAV capsids in pools of surgically resected human skeletal muscle cells from five patients. Six rounds of evolution were performed in various muscle cell types, and evolved variants were validated against…
Tal-effector nucleases (TALENs) are engineered proteins that can stimulate precise genome editing through specific DNA double-strand breaks. Sickle cell disease and ß-thalassemia are common genetic disorders caused by mutations in ß-globin, and we engineered a pair of highly active TALENs that induce modification of 54% of human ß-globin alleles near the site of the sickle mutation. These TALENS stimulate targeted integration of therapeutic, full-length beta-globin cDNA to the endogenous ß-globin locus in 19% of cells prior to selection as quantified by single molecule real-time sequencing. We also developed highly active TALENs to human ?-globin, a pharmacologic target in sickle cell…
Although engineered nucleases can efficiently cleave intracellular DNA at desired target sites, major concerns remain on potential ‘off-target’ cleavage that may occur throughout the genome. We developed an online tool: predicted report of genome-wide nuclease off-target sites (PROGNOS) that effectively identifies off-target sites. The initial bioinformatics algorithms in PROGNOS were validated by predicting 44 of 65 previously confirmed off-target sites, and by uncovering a new off-target site for the extensively studied zinc finger nucleases (ZFNs) targeting C-C chemokine receptor type 5. Using PROGNOS, we rapidly interrogated 128 potential off-target sites for newly designed transcription activator-like effector nucleases containing either Asn-Asn…
Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration…
Staphylococcus epidermidis is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical S. epidermidis strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates. The difficulty in transforming clinical S. epidermidis isolates is primarily due to the type I and IV restriction-modification systems, which…
The production of knock-out (KO) livestock models is both expensive and time consuming due to their long gestational interval and low number of offspring. One alternative to increase efficiency is performing a genetic screening to select pre-implantation embryos that have incorporated the desired mutation. Here we report the use of sheep embryo biopsies for detecting CRISPR/Cas9-induced mutations targeting the gene PDX1 prior to embryo transfer. PDX1 is a critical gene for pancreas development and the target gene required for the creation of pancreatogenesis-disabled sheep. We evaluated the viability of biopsied embryos in vitro and in vivo, and we determined the…
Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and…
Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a novel method for quantifying individual genome editing outcomes at any site of interest using single molecule real time (SMRT) DNA sequencing. We show that this approach can be applied at various loci, using multiple engineered nuclease platforms…
Staphylococcus aureus is a prominent global nosocomial and community-acquired bacterial pathogen. A strong restriction barrier presents a major hurdle for the introduction of recombinant DNA into clinical isolates of S. aureus. Here, we describe the construction and characterization of the IMXXB series of Escherichia coli strains that mimic the type I adenine methylation profiles of S. aureus clonal complexes 1, 8, 30, and ST93. The IMXXB strains enable direct, high-efficiency transformation and streamlined genetic manipulation of major S. aureus lineages.The genetic manipulation of clinical S. aureus isolates has been hampered due to the presence of restriction modification barriers that detect and subsequently degrade inappropriately…
Xanthomonas oryzae pv. oryzicola (Xoc) causes the increasingly important disease bacterial leaf streak of rice (BLS) in part by type III delivery of repeat-rich transcription activator-like (TAL) effectors to upregulate host susceptibility genes. By pathogen whole genome, single molecule, real-time sequencing and host RNA sequencing, we compared TAL effector content and rice transcriptional responses across 10 geographically diverse Xoc strains. TAL effector content is surprisingly conserved overall, yet distinguishes Asian from African isolates. Five TAL effectors are conserved across all strains. In a prior laboratory assay in rice cv. Nipponbare, only two contributed to virulence in strain BLS256 but the…