April 21, 2020  |  

Recipients receiving better HLA-matched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival: A retrospective study

HLA matching at an allelic-level resolution for volunteer unrelated donor (VUD) hematopoietic cell transplanta- tion (HCT) results in improved survival and fewer post-transplant complications. Limitations in typing technolo- gies used for the hyperpolymorphic HLA genes have meant that variations outside of the antigen recognition domain (ARD) have not been previously characterized in HCT. Our aim was to explore the extent of diversity out- side of the ARD and determine the impact of this diversity on transplant outcome. Eight hundred ninety-one VUD-HCT donors and their recipients transplanted for a hematologic malignancy in the United Kingdom were ret- rospectively HLA typed at an ultra-high resolution (UHR) for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 using next- generation sequencing technology. Matching was determined at full gene level for HLA class I and at a coding DNA sequence level for HLA class II genes. The HLA matching status changed in 29.1% of pairs after UHR HLA typ- ing. The 12/12 UHR HLA matched patients had significantly improved 5-year overall survival when compared with those believed to be 12/12 HLA matches based on their original HLA typing but were found to be mismatched after UHR HLA typing (54.8% versus 30.1%, P= .022). Survival was also significantly better in 12/12 UHR HLA- matched patients when compared with those with any degree of mismatch at this level of resolution (55.1% ver- sus 40.1%, P= .005). This study shows that better HLA matching, found when typing is done at UHR that includes exons outside of the ARD, introns, and untranslated regions, can significantly improve outcomes for recipients of a VUD-HCT for a hematologic malignancy and should be prospectively performed at donor selection.


July 19, 2019  |  

Reference grade characterization of polymorphisms in full-length HLA class I and II genes with short-read sequencing on the Ion PGM system and long-reads generated by Single Molecule, Real-time Sequencing on the PacBio platform

Although NGS technologies fuel advances in high-throughput HLA genotyping methods for identification and classification of HLA genes to assist with precision medicine efforts in disease and transplantation, the efficiency of these methods are impeded by the absence of adequately-characterized high-frequency HLA allele reference sequence databases for the highly polymorphic HLA gene system. Here, we report on producing a comprehensive collection of full-length HLA allele sequences for eight classical HLA loci found in the Japanese population. We augmented the second-generation short read data generated by the Ion Torrent technology with long amplicon spanning consensus reads delivered by the third-generation SMRT sequencing method to create reference grade high-quality sequences of HLA class I and II gene alleles resolved at the genomic coding and non-coding level. Forty-six DNAs were obtained from a reference set used previously to establish the HLA allele frequency data in Japanese subjects. The samples included alleles with a collective allele frequency in the Japanese population of more than 99.2%. The HLA loci were independently amplified by long-range PCR using previously designed HLA-locus specific primers and subsequently sequenced using SMRT and Ion PGM sequencers. The mapped long and short-reads were used to produce a reference library of consensus HLA allelic sequences with the help of the reference-aware software tool LAA for SMRT Sequencing. A total of 253 distinct alleles were determined for 46 healthy subjects. Of them, 137 were novel alleles: 101 SNVs and/or indels and 36 extended alleles at a partial or full-length level. Comparing the HLA sequences from the perspective of nucleotide diversity revealed that HLA-DRB1 was the most divergent among the eight HLA genes, and that the HLA-DPB1 gene sequences diverged into two distinct groups, DP2 and DP5, with evidence of independent polymorphisms generated in exon 2. We also identified two specific intronic variations in HLA-DRB1 that might be involved in rheumatoid arthritis. In conclusion, full-length HLA allele sequencing by third-generation and second-generation technologies has provided polymorphic gene reference sequences at a genomic allelic resolution including allelic variations assigned up to the field-4 level for a stronger foundation in precision medicine and HLA-related disease and transplantation studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.