X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Case Study: SMRT Sequencing provides a first look at repeat expansion disorder sequence

Scientists at UC Davis School of Medicine have used the PacBio RS to sequence a previously “unsequenceable” region of highly repetitive DNA on the X chromosome. Their research has provided a critical leap forward in understanding the genetic complexity of repeat expansion disorders such as Fragile X Syndrome. The new method provides a path towards the first accurate means of population screening for Fragile X Syndrome, which is the most common cause of inherited intellectual disability and the most common known genetic cause of autism.

Read More »

Thursday, August 27, 2020

Application Brief: No-Amp targeted sequencing – Best Practices

With the PacBio no-amplification (No-Amp) targeted sequencing method, you can now sequence through previously inaccessible regions of the genome to provide base-level resolution of disease-causing repeat expansions. By combining the CRISPR/Cas9 enrichment method with Single Molecule, Real-Time (SMRT) Sequencing on the Sequel Systems you are no longer limited by hard-to-amplify targets.

Read More »

Monday, March 30, 2020

Customer Experience: Exploring the genetics of fragile X syndrome using DNA sequencing technology

Paul Hagerman, MD/PhD, a professor in the biochemistry and molecular medicine department at UC Davis discusses the use of PacBio SMRT sequencing technology for the fragile X gene. Hagerman says the PacBio RS is able to sequence through more than a kilobase of the CGG trinucleotide repeat element underlying Fragile X Syndrome — something no other sequencing platform has achieved. He also plans to use the data to study methylation of this gene, which tends to occur in cases where there are more than 200 copies of the CGG element.

Read More »

Monday, March 30, 2020

ASHG Virtual Poster: Alternative splicing in FMR1 premutations carriers

In this ASHG 2016 virtual poster, Flora Tassone from UC Davis describes her study of the molecular mechanisms linked to fragile X syndrome and associated disorders, such as FXTAS. She is using SMRT Sequencing to resolve the FMR1 gene in premutation carriers because it’s the only technology that can generate full-length transcripts with the causative CGG repeat expansion. Plus: direct confirmation of predicted isoform configurations.

Read More »

Monday, March 30, 2020

AGBT Virtual Poster: Targeted SMRT Sequencing of difficult regions of the genome using a Cas9, non-amplification based method

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a…

Read More »

Wednesday, February 26, 2020

Sequencing of expanded CGG repeats in the FMR1 gene.

Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent…

Read More »

Wednesday, February 26, 2020

Enrichment of unamplified DNA and long-read SMRT Sequencing in unlocking the underlying biological disease mechanisms of repeat expansion disorders

For many of the repeat expansion disorders, the disease gene has been discovered, however the underlying biological mechanisms have not yet been fully understood. This is mainly due to technological limitations that do not allow for the needed base-pair resolution of the long, repetitive genomic regions. We have developed a novel, amplification-free enrichment technique that uses the CRISPR/Cas9 system to target large repeat expansions. This method, in conjunction with PacBio’s long reads and uniform coverage, enables sequencing of these complex genomic regions. By using a PCR-free amplification method, we are able to access not only the repetitive elements and interruption…

Read More »

Wednesday, February 26, 2020

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.

Read More »

Wednesday, February 26, 2020

Alternative splicing in FMR1 premutations carriers

Over 40% of males and ~16% of female carriers of a FMR1 premutation allele (55-200 CGG repeats) are at risk for developing Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), an adult onset neurodegenerative disorder while, about 20% of female carriers will develop Fragile X-associated Primary Ovarian Insufficiency (FXPOI), in addition to a number of adult-onset clinical problems (FMR1 associated disorders). Marked elevation in FMR1 mRNA levels have been observed with premutation alleles and the resulting RNA toxicity is believed to be the leading molecular mechanism proposed for these disorders. The FMR1 gene, as many housekeeping genes, undergoes alternative splicing. Using long-read isoform…

Read More »

Wednesday, February 26, 2020

Targeted SMRT Sequencing of difficult regions of the genome using a Cas9, non-amplification based method

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a…

Read More »

Wednesday, February 26, 2020

Targeted enrichment without amplification and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a…

Read More »

Wednesday, February 26, 2020

Amplification-free targeted enrichment and SMRT Sequencing of repeat-expansion genomic regions

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease.

Read More »

Wednesday, February 26, 2020

Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be economical for obtaining sequence information for defined regions of the genome. However, most target enrichment methods are reliant upon some form of amplification which can negatively impact downstream analysis. For example, amplification removes epigenetic marks present in native DNA, including nucleotide methylation, which are hypothesized to contribute to disease mechanisms in some disorders. In addition, some genomic regions known to be causative of many genetic disorders have extreme GC content and/or repetitive sequences that tend to be recalcitrant to faithful amplification. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system…

Read More »

Sunday, September 22, 2019

Differential increases of specific FMR1 mRNA isoforms in premutation carriers.

Over 40% of male and ~16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to…

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »