Menu
July 7, 2019  |  

Complete genome sequence of Lactobacillus paracasei L9, a new probiotic strain with high lactic acid-producing capacity.

Lactobaillus paracasei L9 (CGMCC No. 9800) is a new strain with probiotic properties originating from healthy human intestine. Previous studies evidenced that the strain regulates immune modulation and contributes to the production of high amounts of lactic acid. The genome of L. paracasei L9 contains a circular 3076,437-bp chromosome, encoding 3044 CDSs, 15 rRNA genes and 59 tRNA genes. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health.

Bifidobacteria constitute a major group of beneficial intestinal bacteria, and are therefore often used to formulate probiotic products in combination with lactic acid bacteria. The availability of bifidobacterial genome sequences has broadened our knowledge on health-promoting factors as well as their safety assessments. Here, we present the complete genome sequence of Bifidobacterium longum CBT BG7 that consists of a 2.45-Mb chromosome and a plasmid. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Propionibacterium freudenreichii DSM 20271(T).

Propionibacterium freudenreichii subsp. freudenreichii DSM 20271(T) is the type strain of species Propionibacterium freudenreichii that has a long history of safe use in the production dairy products and B12 vitamin. P. freudenreichii is the type species of the genus Propionibacterium which contains Gram-positive, non-motile and non-sporeforming bacteria with a high G?+?C content. We describe the genome of P. freudenreichii subsp. freudenreichii DSM 20271(T) consisting of a 2,649,166 bp chromosome containing 2320 protein-coding genes and 50 RNA-only encoding genes.


July 7, 2019  |  

Complete genome sequence of Lactobacillus heilongjiangensis DSM 28069(T): Insight into its probiotic potential.

Lactobacillus heilongjiangensis DSM 28069(T) is a potential probiotic isolated from traditional Chinese pickle. Here we report the complete genome sequence of this strain. The complete genome is 2,790,548bp with the GC content of 37.5% and devoid of plasmids. Sets of genes involved in the biosynthesis of riboflavin and folate were identified in the genome, which revealed its potential application in biotechnological industry. The genome sequence of L. heilongjiangensis DSM 28069(T) now provides the fundamental information for future studies. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Enterococcus durans KLDS6.0930, a strain with probiotic properties.

Enterococcus durans KLDS6.0930 strain was originally isolated from traditional naturally fermented cream in Inner Mongolia of China. The complete genome sequence of E. durans KLDS6.0930 was carried out using the PacBio RSII platform. The genome contains a circular chromosome and two circular plasmids. Genome sequencing information provides the genetic basis for bioinformatics analysis of bile salt and acid tolerance, cell adhesion, and molecular mechanisms responsible for lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.


July 7, 2019  |  

Complete genome sequence of Bacillus methylotrophicus JJ-D34 isolated from deonjang, a Korean traditional fermented soybean paste.

Bacillus methylotrophicus JJ-D34 showing good proteolytic and antipathogenic activities was isolated from doenjang, a Korean traditional fermented soybean paste. Here, we report the complete genome sequence of strain JJ-D34 harboring a 4,105,955bp circular chromosome encoding 4044 genes with a 46.24% G+C content, which will provide insights into the genomic basis of its effects and facilitating its application to doenjang fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation.

Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products.


July 7, 2019  |  

Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity

BACKGROUND:So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.RESULTS:Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages.CONCLUSIONS:SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.


July 7, 2019  |  

Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages.

Third-generation cephalosporins are a class of ß-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.


July 7, 2019  |  

Next generation sequencing technologies and the changing landscape of phage genomics.

The dawn of next generation sequencing technologies has opened up exciting possibilities for whole genome sequencing of a plethora of organisms. The 2nd and 3rd generation sequencing technologies, based on cloning-free, massively parallel sequencing, have enabled the generation of a deluge of genomic sequences of both prokaryotic and eukaryotic origin in the last seven years. However, whole genome sequencing of bacterial viruses has not kept pace with this revolution, despite the fact that their genomes are orders of magnitude smaller in size compared with bacteria and other organisms. Sequencing phage genomes poses several challenges; (1) obtaining pure phage genomic material, (2) PCR amplification biases and (3) complex nature of their genetic material due to features such as methylated bases and repeats that are inherently difficult to sequence and assemble. Here we describe conclusions drawn from our efforts in sequencing hundreds of bacteriophage genomes from a variety of Gram-positive and Gram-negative bacteria using Sanger, 454, Illumina and PacBio technologies. Based on our experience we propose several general considerations regarding sample quality, the choice of technology and a “blended approach” for generating reliable whole genome sequences of phages.


July 7, 2019  |  

Development of new methods for the quantitative detection and typing of Lactobacillus parabuchneri in dairy products

Thirty-one isolates of Lactobacillus parabuchneri were obtained from cheese containing histamine; of these, 26 were found to possess the hdcA gene encoding histidine decarboxylase. By analysing the genome data of 13 isolates, specific targets for the development of PCR-based detection and typing systems for L. parabuchneri were identified. The real-time PCR for detection showed a linear quantification over a range of 7 logs and a detection limit of 10 gene equivalents per reaction. The strain typing method utilised the amplification of repeat sequences and showed discrimination comparable with a phylogenetic tree, based on genome comparisons. The method was suitable for detecting and monitoring the development of L. parabuchneri in raw milk and cheese.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.