April 21, 2020  |  

Complete genome sequence and characterization of virulence genes in Lancefield group C Streptococcus dysgalactiae isolated from farmed amberjack (Seriola dumerili).

Lancefield group C Streptococcus dysgalactiae causes infections in farmed fish. Here, the genome of S. dysgalactiae strain kdys0611, isolated from farmed amberjack (Seriola dumerili) was sequenced. The complete genome sequence of kdys0611 consists of a single chromosome and five plasmids. The chromosome is 2,142,780?bp long and has a GC content of 40%. It possesses 2061 coding sequences and 67 tRNA and 6 rRNA operons. One clustered regularly interspaced short palindromic repeat, 125 insertion sequences, and four predicted prophage elements were identified. Phylogenetic analysis based on 126 core genes suggested that the kdys0611 strain is more closely related to S. dysgalactiae subsp. dysgalactiae than to S. dysgalactiae subsp. equisimilis. The genome of kdys0611 harbors 87 genes with sequence similarity to putative virulence-associated genes identified in other bacteria, of which 57 exhibit amino acid identity (>52%) to genes of the S. dysgalactiae subsp. equisimilis GGS124 human clinical isolate. Four putative virulence genes, emm5 (FGCSD_0256), spg_2 (FGCSD_1961), skc (FGCSD_1012), and cna (FGCSD_0159), in kdys0611 did not show significant homology with any deposited S. dysgalactiae genes. The chromosomal sequence of kdys0611 has been deposited in GenBank under Accession No. AP018726. This is the first report of the complete genome sequence of S. dysgalactiae isolated from fish. © 2019 The Societies and John Wiley & Sons Australia, Ltd.


April 21, 2020  |  

Complete Genome Sequence of Photobacterium damselae Subsp. damselae Strain SSPD1601 Isolated from Deep-Sea Cage-Cultured Sebastes schlegelii with Septic Skin Ulcer.

Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that can infect a variety of aquatic organisms and humans. Based on an epidemiological investigation conducted over the past 3 years, PDD is one of the most important pathogens causing septic skin ulcer in deep-sea cage-cultured Sebastes schlegelii in the Huang-Bohai Sea area and present throughout the year with high abundance. To further understand the pathogenicity of this species, the pathogenic properties and genome of PDD strain SSPD1601 were analyzed. The results revealed that PDD strain SSPD1601 is a rod-shaped cell with a single polar flagellum, and the clinical symptoms were replicated during artificial infection. The SSPD1601 genome consists of two chromosomes and two plasmids, totaling 4,252,294?bp with 3,751 coding sequences (CDSs), 196 tRNA genes, and 47 rRNA genes. Common virulence factors including flagellin, Fur, RstB, hcpA, OMPs, htpB-Hsp60, VasK, and vgrG were found in strain SSPD1601. Furthermore, SSPD1601 is a pPHDD1-negative strain containing the hemolysin gene hlyAch and three putative hemolysins (emrA, yoaF, and VPA0226), which are likely responsible for the pathogenicity of SSPD1601. The phylogenetic analysis revealed SSPD1601 to be most closely related to Phdp Wu-1. In addition, the antibiotic resistance phenotype indicated that SSPD1601 was not sensitive to ceftazidime, pipemidic, streptomycin, cefalexin, bacitracin, cefoperazone sodium, acetylspiramycin, clarithromycin, amikacin, gentamycin, kanamycin, oxacillin, ampicillin, and trimethoprim-sulfamethoxazole, but only the bacitracin resistance gene bacA was detected based on Antibiotic Resistance Genes Database. These results expand our understanding of PDD, setting the stage for further studies of its pathogenesis and disease prevention.


September 22, 2019  |  

The genome sequence of a new strain of Mycobacterium ulcerans ecovar Liflandii, emerging as a sturgeon pathogen

Mycobacterium ulcerans ecovar Liflandii (MuLiflandii) is emerging as a non-mycobacterial pathogen in amphibians. Here, we make the first report on the prevalence of a new strain of MuLiflandii infection in Chinese sturgeon. All the diseased fish showed the classic clinical symptoms of ascites and/or muscle ulceration. A new slow-growing and acid-fast bacillus ASM001 strain was obtained from the ascites of infected fish; this strain demonstrated pathogenicity when tested in hybrid sturgeon. The complete genome sequence of MuLiflandii ASM001 is a circular chromosome of 6,167,296?bp, with a G?+?C content of 65.57%, containing 4518 predicted coding DNA sequences and 999 pseudo-genes, 3 rRNA operons, and 47 transfer RNA sequences. In addition, we found 245 copies of IS2404, 34 microsatellites, and 36 CRISPR sequences in the whole MuLiflandii ASM001 genome. Among the predicted genes of MuLiflandii ASM001, we found orthologs of 203 virulence factors of clinical MuLiflandii 128FXT operating in host cell invasion, modulation of phagocyte function, and survival inside the macrophages. These virulence factor candidates provide a key basis for understanding their pathogenic mechanisms at the molecular level. A comparative analysis that used complete, existing genomes showed that MuLiflandii ASM001 has high synteny with MuLiflandii 128FXT. We anticipate the availability of the complete MuLiflandii ASM001 genome sequence will provide a valuable resource for comparative genomic studies of MuLiflandii isolates, as well as provide new insights into the host, ecological, and functional diversity of the genus Mycobacterium.


September 22, 2019  |  

Isolation, functional characterization and transmissibility of p3PS10, a multidrug resistance plasmid of the fish pathogen Piscirickettsia salmonis.

Antibiotic resistance is a major public health concern due to its association with the loss of efficacy of antimicrobial therapies. Horizontal transfer events may play a significant role in the dissemination of resistant bacterial phenotypes, being mobilizable plasmids a well-known mechanism. In this study, we aimed to gain insights into the genetics underlying the development of antibiotic resistance by Piscirickettsia salmonis isolates, a bacterial fish pathogen and causative agent of salmonid piscirickettsiosis, and the main target of antibiotics used in Chilean salmon farming. We provide experimental evidence that the plasmid p3PS10, which harbors multidrug resistance genes for chloramphenicol (cat2), tetracyclines [tet(31)], aminoglycosides (sat1 and aadA1), and sulfonamides (sul2), is carried by a group of P. salmonis isolates exhibiting a markedly reduced susceptibility to oxytetracycline in vitro (128-256 µg/mL of minimal inhibitory concentration, MIC). Antibiotic susceptibility analysis extended to those antibiotics showed that MIC of chloramphenicol, streptomycin, and sulfamethoxazole/trimethoprim were high, but the MIC of florfenicol remained at the wild-type level. By means of molecular cloning, we demonstrate that those genes encoding putative resistance markers are indeed functional. Interestingly, mating assays clearly show that p3PS10 is able to be transferred into and replicate in different hosts, thereby conferring phenotypes similar to those found in the original host. According to epidemiological data, this strain is distributed across aquaculture settings in southern Chile and is likely to be responsible for oxytetracycline treatment failures. This work demonstrates that P. salmonis is more versatile than it was thought, capable of horizontally transferring DNA, and probably playing a role as a vector of resistance traits among the seawater bacterial population. However, the low transmission frequency of p3PS10 suggests a negligible chance of resistance markers being spread to human pathogens.


September 21, 2019  |  

Multi-Locus Variable number of tandem repeat Analysis (MLVA) of Yersinia ruckeri confirms the existence of host-specificity, geographic endemism and anthropogenic dissemination of virulent clones.

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of ten Variable Number of Tandem Repeat (VNTR) loci in two five-plex PCR reactions, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over seven decades, was analysed. Minimum spanning tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes, and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, sub-clustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific sub-clustering further indicates persistent colonisation of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less virulent or avirulent strains.Importance This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable, robust, and provides clear, unambiguous and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context. Copyright © 2018 Gulla et al.


July 7, 2019  |  

Genome sequences of Shewanella baltica and Shewanella morhuae strains isolated from the gastrointestinal tract of freshwater fish.

We present here the genome sequences of Shewanella baltica strain CW2 and Shewanella morhuae strain CW7, isolated from the gastrointestinal tract of Salvelinus namaycush (lean lake trout) and Coregonus clupeaformis (whitefish), respectively. These genome sequences provide insights into the niche adaptation of these specific species in freshwater systems. Copyright © 2018 Castillo et al.


July 7, 2019  |  

Complete genome sequence of the virulent Aeromonas salmonicida subsp. masoucida strain RFAS1.

Here, we report the complete genome sequence of the pathogenic Aeromonas salmonicida subsp. masoucida strain RFAS1, isolated from black rockfish and showing signs of furunculosis. Sequencing with the PacBio platform yielded a circular chromosome of 4,783,004?bp and two plasmids (70,968?bp and 63,563?bp) harboring 4,411, 67, and 71 protein-coding genes, respectively. Copyright © 2018 Kim et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.