X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the…

Read More »

Tuesday, April 21, 2020

Antarctic blackfin icefish genome reveals adaptations to extreme environments.

Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are…

Read More »

Tuesday, April 21, 2020

Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance.

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential…

Read More »

Tuesday, April 21, 2020

Genome analysis of the rice coral Montipora capitata.

Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent…

Read More »

Tuesday, April 21, 2020

Urotensin-related gene transcripts mark developmental emergence of the male forebrain vocal control system in songbirds.

Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC), and specifically marks the neurons that form a male-specific projection that encodes timing features of learned song. UTS2B-expressing cells appear early in males, prior to projection formation, but are not observed in the female nucleus. We find no expression evidence for canonical receptors within the vocal circuit, suggesting either signalling to…

Read More »

Tuesday, April 21, 2020

Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity.

Rapid innovation in sequencing technologies and improvement in assembly algorithms have enabled the creation of highly contiguous mammalian genomes. Here we report a chromosome-level assembly of the water buffalo (Bubalus bubalis) genome using single-molecule sequencing and chromatin conformation capture data. PacBio Sequel reads, with a mean length of 11.5?kb, helped to resolve repetitive elements and generate sequence contiguity. All five B. bubalis sub-metacentric chromosomes were correctly scaffolded with centromeres spanned. Although the index animal was partly inbred, 58% of the genome was haplotype-phased by FALCON-Unzip. This new reference genome improves the contig N50 of the previous short-read based buffalo assembly…

Read More »

Tuesday, April 21, 2020

The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes.

Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are…

Read More »

Wednesday, October 23, 2019

The genome of common long-arm octopus Octopus minor.

The common long-arm octopus (Octopus minor) is found in mudflats of subtidal zones and faces numerous environmental challenges. The ability to adapt its morphology and behavioral repertoire to diverse environmental conditions makes the species a promising model for understanding genomic adaptation and evolution in cephalopods.The final genome assembly of O. minor is 5.09 Gb, with a contig N50 size of 197 kb and longest size of 3.027 Mb, from a total of 419 Gb raw reads generated using the Pacific Biosciences RS II platform. We identified 30,010 genes; 44.43% of the genome is composed of repeat elements. The genome-wide phylogenetic…

Read More »

Sunday, September 22, 2019

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT…

Read More »

Sunday, September 22, 2019

De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust.

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for…

Read More »

Sunday, September 22, 2019

The complete chloroplast genome of Chrysanthemum boreale (Asteraceae)

Chrysanthemum boreale is a perennial plant in the Asteraceae family that is native to eastern Asia and has both ornamental and herbal uses. Here, we determined the complete chloroplast genome sequence for C. boreale using long-read sequencing. The chloroplast genome was 151,012?bp and consisted of a large single copy (LSC) region (82,817?bp), a small single copy (SSC) region (18,281?bp) and two inverted repeats (IRs) (24,957?bp). It was predicted to contain 131 genes, including 87 protein-coding genes, eight rRNAs and 46 tRNAs. Phylogenetic analysis of chloroplast genomes clustered C. boreale with other Chrysanthemum and Asteraceae species.

Read More »

Sunday, September 22, 2019

Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species.

The African wild rice species Oryza longistaminata has several beneficial traits compared to cultivated rice species, such as resistance to biotic stresses, clonal propagation via rhizomes, and increased biomass production. To facilitate breeding efforts and functional genomics studies, we de-novo assembled a high-quality, haploid-phased genome. Here, we present our assembly, with a total length of 351?Mb, of which 92.2% was anchored onto 12 chromosomes. We detected 34,389 genes and 38.1% of the genome consisted of repetitive content. We validated our assembly by a comparative linkage analysis and by examining well-characterized gene families. This genome assembly will be a useful resource…

Read More »

Sunday, September 22, 2019

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the…

Read More »

Saturday, September 21, 2019

Phased diploid genome assembly with single-molecule real-time sequencing.

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short-…

Read More »

Friday, July 19, 2019

High-quality assembly of an individual of Yoruban descent

De novo assembly of human genomes is now a tractable effort due in part to advances in sequencing and mapping technologies. We use PacBio single-molecule, real-time (SMRT) sequencing and BioNano genomic maps to construct the first de novo assembly of NA19240, a Yoruban individual from Africa. This chromosome-scaffolded assembly of 3.08 Gb with a contig N50 of 7.25 Mb and a scaffold N50 of 78.6 Mb represents one of the most contiguous high-quality human genomes. We utilize a BAC library derived from NA19240 DNA and novel haplotype-resolving sequencing technologies and algorithms to characterize regions of complex genomic architecture that are…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives