X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Complete genome sequence of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 meters deep on the subsurface of the Iberian Pyritic Belt.

Here, we report the complete genome sequence of Tessaracoccus sp. strain T2.5-30, which consists of a chromosome with 3.2 Mbp, 70.4% G+C content, and 3,005 coding DNA sequences. The strain was isolated from a rock core retrieved at a depth of 139.5 m in the subsurface of the Iberian Pyritic Belt (Spain). Copyright © 2017 Leandro et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2.

In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated Klebsiella sp. strain BRL6-2 on minimal media with alkali lignin as the sole carbon source. This organism was isolated anaerobically from tropical forest soils collected from the Bisley watershed at the Ridge site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are characterized by cycles of iron oxidation and reduction. Genome sequencing was targeted because of its ability to grow on lignin anaerobically and lignocellulolytic…

Read More »

Sunday, July 7, 2019

Genome sequence of Phaeobacter daeponensis type strain (DSM 23529(T)), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis.

TF-218(T) is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218(T) contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production.

Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production…

Read More »

Sunday, July 7, 2019

Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872.

The article provides an overview of the genomic features of Lactobacillus fermentum strain 3872. The genomic sequence reported here is one of three L. fermentum genome sequences completed to date. Comparative genomic analysis allowed the identification of genes that may be contributing to enhanced probiotic properties of this strain. In particular, the genes encoding putative mucus binding proteins, collagen-binding proteins, class III bacteriocin, as well as exopolysaccharide and prophage-related genes were identified. Genes related to bacterial aggregation and survival under harsh conditions in the gastrointestinal tract, along with the genes required for vitamin production were also found.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Edwardsiella hoshinae ATCC 35051.

Edwardsiella hoshinae is a Gram-negative facultative anaerobe that has primarily been isolated from avians and reptiles. We report here the complete and annotated genome sequence of an isolate from a monitor lizard (Varanus sp.), which contains a chromosome of 3,811,650 bp and no plasmids. Copyright © 2017 Reichley et al.

Read More »

Sunday, July 7, 2019

Whole-genome sequences of two closely related bacteria, Actinomyces sp. strain Chiba101 and Actinomyces denticolens DSM 20671(T).

Actinomyces sp. strain Chiba101, isolated from an arthritic leg joint of a pig raised in Japan, is a bacterium closely related to Actinomyces denticolens Here, we deciphered the complete genome sequence of Actinomyces sp. Chiba101 and the high-quality draft genome sequence of A. denticolens DSM 20671(T). Copyright © 2017 Kanesaki et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the gamma-aminobutyric acid-producing strain Streptococcus thermophilus APC151.

Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.

Read More »

Sunday, July 7, 2019

Four complete Paenibacillus larvae genome sequences.

Four complete genome sequences of genetically distinct Paenibacillus larvae strains have been determined. Pacific BioSciences single-molecule real-time (SMRT) sequencing technology was used as the sole method of sequence determination and assembly. The chromosomes exhibited a G+C content of 44.1 to 44.2% and a molecular size range of 4.29 to 4.67 Mbp. Copyright © 2017 Dingman.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Dolosigranulum pigrum from a patient with interstitial lung disease using single-molecule real-time sequencing technology.

The whole genome sequence of Dolosigranulum pigrum isolated from the blood of a patient with interstitial lung disease was sequenced with the Pacific Biosciences RS II platform. The genome size is 2.1 Mb with 2,127 annotated coding sequences; it contained two clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems. Copyright © 2017 Mukhopadhyay et al.

Read More »

Sunday, July 7, 2019

The complete genome sequence of Exiguobacterium arabatum W-01 reveals potential probiotic functions.

Shrimp is extensively cultured worldwide. Shrimp farming is suffering from a variety of diseases. Probiotics are considered to be one of the effective methods to prevent and cure shrimp diseases. Exiguobacterium arabatum W-01, a gram-positive and orange-pigmented bacterium, was isolated from the intestine of a healthy Penaeus vannamei specimen. Whole-genome sequencing revealed a genome of 2,914,854 bp, with 48.02% GC content. In total, 3,083 open reading frames (ORFs) were identified, with an average length of 843.98 bp and a mean GC content of 48.11%, accounting for 89.27% of the genome. Among these ORFs, 2,884 (93.5%) genes were classified into Clusters of Orthologous…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »