Menu
June 1, 2021  |  

Targeted sequencing of genes from soybean using NimbleGen SeqCap EZ and PacBio SMRT Sequencing

Full-length gene capture solutions offer opportunities to screen and characterize structural variations and genetic diversity to understand key traits in plants and animals. Through a combined Roche NimbleGen probe capture and SMRT Sequencing strategy, we demonstrate the capability to resolve complex gene structures often observed in plant defense and developmental genes spanning multiple kilobases. The custom panel includes members of the WRKY plant-defense-signaling family, members of the NB-LRR disease-resistance family, and developmental genes important for flowering. The presence of repetitive structures and low-complexity regions makes short-read sequencing of these genes difficult, yet this approach allows researchers to obtain complete sequences for unambiguous resolution of gene models. This strategy has been applied to genomic DNA samples from soybean coupled with barcoding for multiplexing.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever and organ failure, but mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for this viral tolerance are unclear. Recent publications highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient, and at least some EVEs are under purifying selection, suggesting they are beneficial to the host. To characterize EVE biogenesis in a tractable system, we sequenced the Ae. aegypti cell line, Aag2, to 58-fold coverage and present a de novo assembly of the genome. The assembly contains 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, consisting of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify EVEs in the genome homologous to a range of extant viruses, many of which cluster in these regions of repetitive DNA. The contiguous assembly allows for more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing.


June 1, 2021  |  

A comprehensive study of the sugar pine (Pinus lambertiana) transcriptome implemented through diverse next-generation sequencing approaches

The assembly, annotation, and characterization of the sugar pine (Pinus lambertiana Dougl.) transcriptome represents an opportunity to study the genetic mechanisms underlying resistance to the invasive white pine blister rust (Cronartium ribicola) as well as responses to other abiotic stresses. The assembled transcripts also provide a resource to improve the genome assembly. We selected a diverse set of tissues allowing the first comprehensive evaluation of the sugar pine gene space. We have combined short read sequencing technologies (Illumina MiSeq and HiSeq) with the relatively new Pacific Biosciences Iso-Seq approach. From the 2.5 billion and 1.6 million Illumina and PacBio (46 SMRT cells) reads, 33,720 unigenes were de novo assembled. Comparison of sequencing technologies revealed improved coverage with Illumina HiSeq reads and better splice variant detection with PacBio Iso-Seq reads. The genes identified as unique to each library ranges from 199 transcripts (basket seedling) to 3,482 transcripts (female cones). In total, 10,026 transcripts were shared by all libraries. Genes differentially expressed in response to these provided insight on abiotic and biotic stress responses. To analyze orthologous sequences, we compared the translated sequences against 19 plant species, identifying 7,229 transcripts that clustered uniquely among the conifers. We have generated here a high quality transcriptome from one WPBR susceptible and one WPBR resistant sugar pine individual. Through the comprehensive tissue sampling and the depth of the sequencing achieved, detailed information on disease resistance can be further examined.


June 1, 2021  |  

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software: (1) whole genome sequencing data from a highly repetitive diploid fungal (Clavicorona pyxidata) and (2) whole genome sequencing data from an F1 hybrid from two inbred Arabidopsis strains: Cvi-0 and Col-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs (haplotype specific contigs) of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina® platform. For the ArabidopsisF1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. The current Falcon-Unzip method will lead to understand how to solve more difficult polyploid genome assembly problems and improve the computational efficiency for large genome assemblies. Based on this work, we can develop a pipeline enabling routinely assemble diploid or polyploid genomes as haplotigs, representing a comprehensive view of the genomes that can be studied with the information at hand.


June 1, 2021  |  

Un-zipping diploid genomes – revealing all kinds of heterozygous variants from comprehensive hapltotig assemblies

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON (https://github.com/PacificBiosciences/FALCON), we developed new algorithms and software (FALCON-unzip) for de novo haplotype reconstructions from SMRT Sequencing data. We apply the algorithms and the prototype software for (1) a highly repetitive diploid fungal genome (Clavicorona pyxidata) and (2) an F1 hybrid from two inbred Arabidopsis strains: CVI-0 and COL-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina platform. For the Arabidopsis F1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. Finally, we applied this method to WGS human data sets to demonstrate the potential for resolving complicated, medically-relevant genomic regions.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue and Zika viruses by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient and at least some EVEs are under purifying selection, which suggests that they are beneficial to the host. In order characterize EVE biogenesis in a tractable system we sequenced the Ae. aegypti cell line, Aag2, to 58X coverage and here present a de novo assembly of the genome. The assembly consists of 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, made up of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify a plethora of EVEs in the genome homologous to a diverse range of extant viruses, many of which cluster in these regions of highly repetitive DNA. The highly contiguous nature of this assembly allows for a more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing. Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient and at least some EVEs are under purifying selection, which suggests that they are beneficial to the host. In order characterize EVE biogenesis in a tractable system we sequenced the Ae. aegypti cell line, Aag2, to 58X coverage and here present a de novo assembly of the genome. The assembly consists of 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, made up of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify a plethora of EVEs in the genome homologous to a diverse range of extant viruses, many of which cluster in these regions of highly repetitive DNA. The highly contiguous nature of this assembly allows for a more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing. Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear.


June 1, 2021  |  

De novo PacBio long-read assembled avian genomes correct and add to genes important in neuroscience and conservation research

To test the impact of high-quality genome assemblies on biological research, we applied PacBio long-read sequencing in conjunction with the new, diploid-aware FALCON-Unzip assembler to a number of bird species. These included: the zebra finch, for which a consortium-generated, Sanger-based reference exists, to determine how the FALCON-Unzip assembly would compare to the current best references available; Anna’s hummingbird genome, which had been assembled with short-read sequencing methods as part of the Avian Phylogenomics phase I initiative; and two critically endangered bird species (kakapo and ‘alala) of high importance for conservations efforts, whose genomes had not previously been sequenced and assembled.


June 1, 2021  |  

Detecting pathogenic structural variants with long-read PacBio SMRT Sequencing

Most of the base pairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization or optical mapping but too large to reliably discover with short-read DNA sequencing. Long-read sequencing with PacBio Single Molecule, Real-Time (SMRT) Sequencing platforms fills this technology gap. PacBio SMRT Sequencing detects tens of thousands of structural variants in a human genome with approximately five times the sensitivity of short-read DNA sequencing. Effective application of PacBio SMRT Sequencing to detect structural variants requires quality bioinformatics tools that account for the characteristics of PacBio reads. To provide such a solution, we developed pbsv, a structural variant caller for PacBio reads that works as a chain of simple stages: 1) map reads to the reference genome, 2) identify reads with signatures of structural variation, 3) cluster nearby reads with similar signatures, 4) summarize each cluster into a consensus variant, and 5) filter for variants with sufficient read support. To evaluate the baseline performance of pbsv, we generated high coverage of a diploid human genome on the PacBio Sequel System, established a target set of structural variants, and then titrated to lower coverage levels. The false discovery rate for pbsv is low at all coverage levels. Sensitivity is high even at modest coverage: above 85% at 10-fold coverage and above 95% at 20-fold coverage. To assess the potential for PacBio SMRT Sequencing to identify pathogenic variants, we evaluated an individual with clinical symptoms suggestive of Carney complex for whom short-read whole genome sequencing was uninformative. The individual was sequenced to 9-fold coverage on the PacBio Sequel System, and structural variants were called with pbsv. Filtering for rare, genic structural variants left six candidates, including a heterozygous 2,184 bp deletion that removes the first coding exon of PRKAR1A. Null mutations in PRKAR1Acause autosomal dominant Carney complex, type 1. The variant was determined to be de novo, and it was classified as likely pathogenic based on ACMG standards and guidelines for variant interpretation. These case studies demonstrate the ability of pbsv to detect structural variants in low-coverage PacBio SMRT Sequencing and suggest the importance of considering structural variants in any study of human genetic variation.


June 1, 2021  |  

De novo assembly and preliminary annotation of the Schizocardium californicum genome

Animals in the phylum Hemichordata have provided key understanding of the origins and development of body patterning and nervous system organization. However, efforts to sequence and assemble the genomes of highly heterozygous non-model organisms have proven to be difficult with traditional short read approaches. Long repetitive DNA structures, extensive structural variation between haplotypes in polyploid species, and large genome sizes are limiting factors to achieving highly contiguous genome assemblies. Here we present the highly contiguous de novo assembly and preliminary annotation of an indirect developing hemichordate genome, Schizocardium californicum, using SMRT Sequening long reads.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


February 5, 2021  |  

PAG 2016 Highlights: Customer interviews

See what PacBio users had to say about SMRT Sequencing at the Plant and Animal Genome (PAG) Conference in San Diego. This brief video captures highlights from posters, presentations, and…


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.