fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Retrohoming of a mobile group II intron in human cells suggests how eukaryotes limit group II intron proliferation.

Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse…

Read More »

Sunday, July 7, 2019

DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes?

DNA N(6)-adenine methylation (N(6)-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.

Read More »

Sunday, July 7, 2019

Get your high-quality low-cost genome sequence.

The study of whole-genome sequences has become essential for almost all branches of biological research. Next-generation sequencing (NGS) has revolutionized the scalability, speed, and resolution of sequencing and brought genomic science within reach of academic laboratories that study non-model organisms. Here, we show that a high-quality draft genome of a eukaryote can be obtained at relatively low cost by exploiting a hybrid combination of sequencing strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

Read More »

Sunday, July 7, 2019

Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea.

TET/JBP enzymes oxidize 5-methylpyrimidines in DNA. In mammals, the oxidized methylcytosines (oxi-mCs) function as epigenetic marks and likely intermediates in DNA demethylation. Here we present a method based on diglucosylation of 5-hydroxymethylcytosine (5hmC) to simultaneously map 5hmC, 5-formylcytosine, and 5-carboxylcytosine at near-base-pair resolution. We have used the method to map the distribution of oxi-mC across the genome of Coprinopsis cinerea, a basidiomycete that encodes 47 TET/JBP paralogs in a previously unidentified class of DNA transposons. Like 5-methylcytosine residues from which they are derived, oxi-mC modifications are enriched at centromeres, TET/JBP transposons, and multicopy paralogous genes that are not expressed, but…

Read More »

Sunday, July 7, 2019

Direct detection and sequencing of damaged DNA bases.

Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template – as a by-product of the sequencing method – through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage,…

Read More »

Sunday, July 7, 2019

Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis.

Malassezia is the dominant fungus in the human skin mycobiome and is associated with common skin disorders including atopic eczema (AE)/dermatitis. Recently, it was found that Malassezia sympodialis secretes nanosized exosome-like vesicles, designated MalaEx, that carry allergens and can induce inflammatory cytokine responses. Extracellular vesicles from different cell-types including fungi have been found to deliver functional RNAs to recipient cells. In this study we assessed the presence of small RNAs in MalaEx and addressed if the levels of these RNAs differ when M. sympodialis is cultured at normal human skin pH versus the elevated pH present on the skin of…

Read More »

Sunday, July 7, 2019

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus.

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles…

Read More »

Sunday, July 7, 2019

SMRT Sequencing revealed mitogenome characteristics and mitogenome-wide DNA modification pattern in Ophiocordyceps sinensis.

Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis, with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3, 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A…

Read More »

Sunday, July 7, 2019

N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena.

DNA N6-methyladenine (6mA) is newly rediscovered as a potential epigenetic mark across a more diverse range of eukaryotes than previously realized. As a unicellular model organism, Tetrahymena thermophila is among the first eukaryotes reported to contain 6mA modification. However, lack of comprehensive information about 6mA distribution hinders further investigations into its function and regulatory mechanism. In this study, we provide the first genome-wide, base pair-resolution map of 6mA in Tetrahymena by applying single-molecule real-time (SMRT) sequencing. We provide evidence that 6mA occurs mostly in the AT motif of the linker DNA regions. More strikingly, these linker DNA regions with 6mA…

Read More »

Sunday, July 7, 2019

DNA methylation profiling using long-read Single Molecule Real-Time bisulfite sequencing (SMRT-BS).

For the past two decades, bisulfite sequencing has been a widely used method for quantitative CpG methylation detection of genomic DNA. Coupled with PCR amplicon cloning, bisulfite Sanger sequencing allows for allele-specific CpG methylation assessment; however, its time-consuming protocol and inability to multiplex has recently been overcome by next-generation bisulfite sequencing techniques. Although high-throughput sequencing platforms have enabled greater accuracy in CpG methylation quantitation as a result of increased bisulfite sequencing depth, most common sequencing platforms generate reads that are similar in length to the typical bisulfite PCR size range (~300-500 bp). Using the Pacific Biosciences (PacBio) sequencing platform, we developed…

Read More »

Sunday, July 7, 2019

rHAT: fast alignment of noisy long reads with regional hashing.

Single Molecule Real-Time (SMRT) sequencing has been widely applied in cutting-edge genomic studies. However, it is still an expensive task to align the noisy long SMRT reads to reference genome by state-of-the-art aligners, which is becoming a bot-tleneck in applications with SMRT sequencing. Novel approach is on demand for improving the efficiency and effectiveness of SMRT read alignment.We propose Regional Hashing-based Alignment Tool (rHAT), a seed-and-extension-based read alignment approach specifically designed for noisy long reads. rHAT indexes reference genome by regional hash table (RHT), a hash table-based index which describes the short tokens within local windows of reference genome. In…

Read More »

Sunday, July 7, 2019

Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha.

Transposable elements are a major player contributing to genetic variation and shaping genome evolution. Multiple independent transposon domestication events have occurred in ciliates, recruiting transposases to key roles in cellular processes. In the ciliate Oxytricha trifallax, the telomere-bearing elements (TBE), a Tc1/mariner transposon, occupy a significant portion of the germline genome and are involved in programmed genome rearrangements that produce a transcriptionally active somatic nucleus from a copy of the germline nucleus during development.Here we provide a thorough characterization of the distribution and sequences of TBE transposons in the Oxytricha germline genome. We annotate more than 10,000 complete and 24,000…

Read More »

Sunday, July 7, 2019

De novo genome assembly shows genome wide similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.

Trypanosoma brucei is a eukaryotic pathogen which causes African trypanosomiasis. It is notable for its variant surface glycoprotein (VSG) coat, which undergoes antigenic variation enabled by a large suite of VSG pseudogenes, allowing for persistent evasion of host adaptive immunity. While Trypanosoma brucei rhodesiense (Tbr) and T. b gambiense (Tbg) are human infective, related T. b. brucei (Tbb) is cleared by human sera. A single gene, the Serum Resistance Associated (SRA) gene, confers Tbr its human infectivity phenotype. Potential genetic recombination of this gene between Tbr and non-human infective Tbb strains has significant epidemiological consequences for Human African Trypanosomiasis outbreaks.Using…

Read More »

Sunday, July 7, 2019

Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications.

A gene-level targeted enrichment method for direct detection of epigenetic modifications is described. The approach is demonstrated on the CGG-repeat region of the FMR1 gene, for which large repeat expansions, hitherto refractory to sequencing, are known to cause fragile X syndrome. In addition to achieving a single-locus enrichment of nearly 700,000-fold, the elimination of all amplification steps removes PCR-induced bias in the repeat count and preserves the native epigenetic modifications of the DNA. In conjunction with the single-molecule real-time sequencing approach, this enrichment method enables direct readout of the methylation status and the CGG repeat number of the FMR1 allele(s)…

Read More »

1 3 4 5 6

Subscribe for blog updates:

Archives