June 1, 2021  |  

Single Molecule, Real-Time Sequencing for base modification detection in eukaryotic organisms: Coprinopsis cinerea.

Single Molecule Real-Time (SMRT) DNA sequencing provides a wealth of kinetic information beyond the extraction of the primary DNA sequence, and this kinetic information can provide for the direct detection of modified bases present in genomic DNA. This method has been demonstrated for base modification detection in prokaryotes at base and strand resolutions. In eukaryotes, the common base modifications known to exist are the cytosine variants including methyl, hydroxymethyl, formyl and carboxyl forms. Each of these modifications exhibits different signatures in SMRT kinetic data, allowing for unprecedented possibilities to differentiate between them in direct sequencing data. We present early results of directly sequencing different base modifications in eukaryotic genomic DNA using this method.


June 1, 2021  |  

Integrative biology of a fungus: Using PacBio SMRT Sequencing to interrogate the genome, epigenome, and transcriptome of Neurospora crassa.

PacBio SMRT Sequencing has the unique ability to directly detect base modifications in addition to the nucleotide sequence of DNA. Because eukaryotes use base modifications to regulate gene expression, the absence or presence of epigenetic events relative to the location of genes is critical to elucidate the function of the modification. Therefore an integrated approach that combines multiple omic-scale assays is necessary to study complex organisms. Here, we present an integrated analysis of three sequencing experiments: 1) DNA sequencing, 2) base-modification detection, and 3) Iso-seq analysis, in Neurospora crassa, a filamentous fungus that has been used to make many landmark discoveries in biochemistry and genetics. We show that de novo assembly of a new strain yields complete assemblies of entire chromosomes, and additionally contains entire centromeric sequences. Base-modification analyses reveal candidate sites of increased interpulse duration (IPD) ratio, that may signify regions of 5mC, 5hmC, or 6mA base modifications. Iso-seq method provides full-length transcript evidence for comprehensive gene annotation, as well as context to the base-modifications in the newly assembled genome. Projects that integrate multiple genome-wide assays could become common practice for identifying genomic elements and understanding their function in new strains and organisms.


June 1, 2021  |  

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes across the tree of life ranging in size from 1Mbp to 3Gbp in an attempt to answer how long the reads need to be and how much coverage is necessary to completely assemble their chromosomes with single molecule sequencing. We also present a novel error correction and assembly algorithm using a combination of PacBio and pre-assembled Illumina sequencing. This new algorithm greatly outperforms other published hybrid algorithms.


June 1, 2021  |  

Whole genome sequencing and epigenome characterization of cancer cells using the PacBio platform.

The comprehensive characterization of cancer genomes and epigenomes for understanding drug resistance remains an important challenge in the field of oncology. For example, PC-9, a non-small cell lung cancer (NSCL) cell line, contains a deletion mutation in exon 19 (DelE746A750) of EGRF that renders it sensitive to erlotinib, an EGFR inhibitor. However, sustained treatment of these cells with erlotinib leads to drug-tolerant cell populations that grow in the presence of erlotinib. However, the resistant cells can be resensitized to erlotinib upon treatment with methyltransferase inhibitors, suggesting a role of epigenetic modification in development of drug resistance. We have characterized for the first time cancer genomes of both drug-sensitive and drug-resistant PC- 9 cells using long-read PacBio sequencing. The PacBio data allowed us to generate a high-quality, de novo assembly of this cancer genome, enabling the detection of forms of genomic variations at all size scales, including SNPs, structural variations, copy number alterations, gene fusions, and translocations. The data simultaneously provide a global view of epigenetic DNA modifications such as methylation. We will present findings on large-scale changes in the methylation status across the cancer genome as a function of drug sensitivity.


June 1, 2021  |  

Epigenome characterization of human genomes using the PacBio platform

In addition to the genome and transcriptome, epigenetic information is essential to understand biological processes and their regulation, and their misregulation underlying disease. Traditionally, epigenetic DNA modifications are detected using upfront sample preparation steps such as bisulfite conversion, followed by sequencing. Bisulfite sequencing has provided a wealth of knowledge about human epigenetics, however it does not access the entire genome due to limitations in read length and GC- bias of the sequencing technologies used. In contrast, Single Molecule, Real-Time (SMRT) DNA Sequencing is unique in that it can detect DNA base modifications as part of the sequencing process. It can thereby leverage the long read lengths and lack of GC bias for more comprehensive views of the human epigenome. I will highlight several examples of this capability towards the generation of new biological insights, including the resolution of methylation states in repetitive and GC-rich regions of the genome, and large-scale changes in the methylation status across a cancer genome as a function of drug sensitivity.


June 1, 2021  |  

Enrichment of unamplified DNA and long-read SMRT Sequencing in unlocking the underlying biological disease mechanisms of repeat expansion disorders

For many of the repeat expansion disorders, the disease gene has been discovered, however the underlying biological mechanisms have not yet been fully understood. This is mainly due to technological limitations that do not allow for the needed base-pair resolution of the long, repetitive genomic regions. We have developed a novel, amplification-free enrichment technique that uses the CRISPR/Cas9 system to target large repeat expansions. This method, in conjunction with PacBio’s long reads and uniform coverage, enables sequencing of these complex genomic regions. By using a PCR-free amplification method, we are able to access not only the repetitive elements and interruption sequences accurately, but also the epigenetic information.


June 1, 2021  |  

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.


June 1, 2021  |  

Enrichment of unamplified DNA and long-read SMRT Sequencing to unlock repeat expansion disorders

Nucleotide repeat expansions are a major cause of neurological and neuromuscular disease in humans, however, the nature of these genomic regions makes characterizing them extremely challenging. Accurate DNA sequencing of repeat expansions using short-read sequencing technologies is difficult, as short-read technologies often cannot read through regions of low sequence complexity. Additionally, these short reads do not span the entire region of interest and therefore sequence assembly is required. Lastly, most target enrichment methods are reliant upon amplification which adds the additional caveat of PCR bias. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system for specific targeting of individual human genes. This method, in conjunction with PacBio’s long reads and uniform coverage, enables sequencing of complex genomic regions that cannot be investigated with other technologies. Using human genomic DNA samples and this strategy, we have successfully targeted the loci of Huntington’s Disease (HTT; CAG repeat), Fragile X (FMR1; CGG repeat), ALS (C9orf72; GGGGCC repeat), and Spinocerebellar ataxia type 10 (SCA10; variable ATTCT repeat) for examination. With this data, we demonstrate the ability to isolate hundreds of individual on-target molecules in a single SMRT Cell and accurately sequence through long repeat stretches, regardless of the extreme GC-content. The method is compatible with multiplexing of multiple targets and multiple samples in a single reaction. This technique also captures native DNA molecules for sequencing, allowing for the possibility of direct detection and characterization of epigenetic signatures.


April 21, 2020  |  

DART-seq: an antibody-free method for global m6A detection.

N6-methyladenosine (m6A) is a widespread RNA modification that influences nearly every aspect of the messenger RNA lifecycle. Our understanding of m6A has been facilitated by the development of global m6A mapping methods, which use antibodies to immunoprecipitate methylated RNA. However, these methods have several limitations, including high input RNA requirements and cross-reactivity to other RNA modifications. Here, we present DART-seq (deamination adjacent to RNA modification targets), an antibody-free method for detecting m6A sites. In DART-seq, the cytidine deaminase APOBEC1 is fused to the m6A-binding YTH domain. APOBEC1-YTH expression in cells induces C-to-U deamination at sites adjacent to m6A residues, which are detected using standard RNA-seq. DART-seq identifies thousands of m6A sites in cells from as little as 10?ng of total RNA and can detect m6A accumulation in cells over time. Additionally, we use long-read DART-seq to gain insights into m6A distribution along the length of individual transcripts.


April 21, 2020  |  

De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth.

Casuarina equisetifolia (C. equisetifolia), a conifer-like angiosperm with resistance to typhoon and stress tolerance, is mainly cultivated in the coastal areas of Australasia. C. equisetifolia, making it a valuable model to study secondary growth associated genes and stress-tolerance traits. However, the genome sequence is unavailable and therefore wood-associated growth rate and stress resistance at the molecular level is largely unexplored. We therefore constructed a high-quality draft genome sequence of C. equisetifolia by a combination of Illumina second-generation sequencing reads and Pacific Biosciences single-molecule real-time (SMRT) long reads to advance the investigation of this species. Here, we report the genome assembly, which contains approximately 300 megabases (Mb) and scaffold size of N50 is 1.06 Mb. Additionally, gene annotation, assisted by a combination of prediction and RNA-seq data, generated 29 827 annotated protein-coding genes and 1983 non-coding genes, respectively. Furthermore, we found that the total number of repetitive sequences account for one-third of the genome assembly. Here we also construct the genome-wide map of DNA modification, such as two novel forms N6 -adenine (6mA) and N4-methylcytosine (4mC) at the level of single-nucleotide resolution using single-molecule real-time (SMRT) sequencing. Interestingly, we found that 17% of 6mA modification genes and 15% of 4mC modification genes also included alternative splicing events. Finally, we investigated cellulose, hemicellulose, and lignin-related genes, which were associated with secondary growth and contained different DNA modifications. The high-quality genome sequence and annotation of C. equisetifolia in this study provide a valuable resource to strengthen our understanding of the diverse traits of trees. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.