Menu
July 19, 2019  |  

Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population.

Chemosynthetic symbiosis is one of the successful systems for adapting to a wide range of habitats including extreme environments, and the metabolic capabilities of symbionts enable host organisms to expand their habitat ranges. However, our understanding of the adaptive strategies that enable symbiotic organisms to expand their habitats is still fragmentary. Here, we report that a single-ribotype endosymbiont population in an individual of the host vent mussel, Bathymodiolus septemdierum has heterogeneous genomes with regard to the composition of key metabolic gene clusters for hydrogen oxidation and nitrate reduction. The host individual harbours heterogeneous symbiont subpopulations that either possess or lack the gene clusters encoding hydrogenase or nitrate reductase. The proportions of the different symbiont subpopulations in a host appeared to vary with the environment or with the host’s development. Furthermore, the symbiont subpopulations were distributed in patches to form a mosaic pattern in the gill. Genomic heterogeneity in an endosymbiont population may enable differential utilization of diverse substrates and confer metabolic flexibility. Our findings open a new chapter in our understanding of how symbiotic organisms alter their metabolic capabilities and expand their range of habitats.


July 19, 2019  |  

Complete genome sequence of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 meters deep on the subsurface of the Iberian Pyritic Belt.

Here, we report the complete genome sequence of Tessaracoccus sp. strain T2.5-30, which consists of a chromosome with 3.2 Mbp, 70.4% G+C content, and 3,005 coding DNA sequences. The strain was isolated from a rock core retrieved at a depth of 139.5 m in the subsurface of the Iberian Pyritic Belt (Spain). Copyright © 2017 Leandro et al.


July 19, 2019  |  

Complete genome sequence of Vibrio campbellii strain 20130629003S01 isolated from shrimp with acute hepatopancreatic necrosis disease.

Vibrio campbellii is widely distributed in the marine environment and is an important pathogen of aquatic organisms such as shrimp, fish, and mollusks. An isolate of V. campbellii carrying the pirAB(vp) gene, causing acute hepatopancreatic necrosis disease (AHPND), has been reported. There are no previous reports about the complete genome of V. campbellii causing AHPND (VCAHPND). To extend our understanding of the pathogenesis of VCAHPND at the genomic level, the genome of V. campbellii 20130629003S01 isolated from a shrimp with AHPND was sequenced and analysed.The complete genome sequence of V. campbellii 20130629003S01 was generated using the PacBio RSII platform with single molecule, real-time sequencing. The 20130629003S01 strain consists of two circular chromosomes (3,621,712 bp in chromosome 1 and 2,245,751 bp in chromosome 2) and four plasmids of 70,066, 204,531, 143,140, and 86,121 bp. The genome contains a total of 5855 protein coding genes, 134 tRNA genes and 37 rRNA genes. The average nucleotide identity value of 20130629003S01 and other reference V. campbellii strains was 97.46%, suggesting that they are closely related.The genome sequence of V. campbellii 20130629003S01 and its comparative analysis with other V. campbellii strains that we present here are important for a better understanding of the genomic characteristics of VCAHPND.


July 19, 2019  |  

PacBio sequencing reveals transposable element as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae.

The sustainable cultivation of rice, which serves as staple food crop for more than half of the world’s population, is under serious threat due to the huge yield losses inflicted by rice blast disease caused by the globally destructive fungus Magnaporthe oryzae (Pyricularia oryzae) (Dean et al., 2012, Nalley et al., 2016, Deng et al., 2017). This filamentous ascomycete fungus is also capable of causing blast infection on other economically important cereal crops, including wheat, millet, and barley, making it the world’s most important plant pathogenic fungus (Zhong et al., 2016). The advent of whole-genome sequencing technology and the subsequent deployment of next-generation sequencing (NGS) strategies have successfully generated genome assemblies for over 50 isolates of M. oryzae, which have played an instrumental role in enhancing our understanding of how rice blast fungus undertakes host adaptation, host specificity, and host range expansion to overcome host resistance (Dean et al., 2005, Xue et al., 2012, Wu et al., 2015, Zhang et al., 2016). However, research findings obtained from comparative genomic studies conducted using the NGS-assembled genome do not present an in-depth account of the genomic features that contribute to the prevailing genomic variations among M. oryzae species, because NGS assemblies are highly fragmented and lack most of the lineage-specific (LS) regions, which are more plastic than the core genome and enriched with repeats and effector proteins (Raffaele and Kamoun, 2012, Faino et al., 2016).


July 7, 2019  |  

Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.

Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103?kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a ‘core’ region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220?kb region and a prophage that drastically change the host metabolic capacity and survivability. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Draft genome of Janthinobacterium sp. RA13 isolated from Lake Washington sediment.

Sequencing the genome of Janthinobacterium sp. RA13 from Lake Washington sediment is announced. From the genome content, a versatile life-style is predicted, but not bona fide methylotrophy. With the availability of its genomic sequence, Janthinobacterium sp. RA13 presents a prospective model for studying microbial communities in lake sediments. Copyright © 2015 McTaggart et al.


July 7, 2019  |  

Complete genome of Geobacter pickeringii G13T, a metal-reducing isolate from sedimentary kaolin deposits.

We used PacBio sequencing to assemble the genome of the pristine freshwater isolate Geobacter pickeringii G13(T) into a single 3,618,700-bp circular chromosome polished to 99.999% accuracy (quality value [QV], 50). This isolate shares several features with other Geobacter spp., including genes for degradation of aromatics and an abundance of multiheme c-type cytochromes. Copyright © 2015 Badalamenti and Bond.


July 7, 2019  |  

Genomes of Geoalkalibacter ferrihydriticus Z-0531Tand Geoalkalibacter subterraneus Red1T, two haloalkaliphilic metal-reducing Deltaproteobacteria.

We sequenced and annotated genomes of two haloalkaliphilic Deltaproteobacteria, Geoalkalibacter ferrihydriticus Z-0531(T) (DSM 17813) and Geoalkalibacter subterraneus Red1(T) (DSM 23483). During assembly, we discovered that the DSMZ stock culture of G. subterraneus was contaminated. We reisolated G. subterraneus in axenic culture and redeposited it in DSMZ and JCM. Copyright © 2015 Badalamenti et al.


July 7, 2019  |  

Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

The genomes of Methylosarcina lacus LW14(T) (=ATCC BAA-1047(T) = JCM 13284(T)), Methylobacter sp. strain 21/22, Methylobacter sp. strain 31/32, Methylomonas sp. strain LW13, Methylomonas sp. strain MK1, and Methylomonas sp. strain 11b were sequenced and are reported here. All the strains are obligately methanotrophic bacteria isolated from the sediment of Lake Washington. Copyright © 2015 Kalyuzhnaya et al.


July 7, 2019  |  

Complete genome sequence of a novel bacterium within the family Rhodocyclaceae that degrades polycyclic aromatic hydrocarbons.

A polycyclic aromatic hydrocarbon-degrading bacterium designated strain Ca6, a member of the family Rhodocyclaceae and a representative of the uncharacterized pyrene group 1 (PG1), was isolated and its genome sequenced. The presence of several genes suspected to be associated with PG1 was confirmed, and additional genes for aromatic compound metabolism were detected. Copyright © 2015 Singleton et al.


July 7, 2019  |  

Genomics of methylotrophy in gram-positive methylamine-utilizing bacteria

Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria.


July 7, 2019  |  

Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using PacBio Single-Molecule Real-Time Sequencing technology.

A previously uncharacterized species of the genus Arthrobacter, strain IHBB 11108 (MCC 2780), is a Gram-positive, strictly aerobic, nonmotile, cold-adapted, and protease-producing alkaliphilic actinobacterium, isolated from shallow undersurface water from Chandra Tal Lake, Lahaul-Spiti, India. The complete genome of the strain is 3.6 Mb in size with an average 58.97% G+C content.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.