October 29, 2021  |  

Resolving Complex Pathogenic Alleles using HiFi Long-Range Amplicon Data and a New Clustering Algorithm

Many genetic diseases are mapped to structurally complex loci. These regions contain highly similar paralogous alleles (>99% identity) that span kilobases within the human genome. Comprehensive screening for pathogenic variants is incomplete and labor intensive using short-reads or optical mapping. In contrast, long-range amplification and PacBio HiFi sequencing fully and directly resolve and phase a wide range of pathogenic variants without inference. To capitalize on the accuracy of HiFi data we designed a new amplicon analysis tool, pbAA. pbAA can rapidly deconvolve a mixture of haplotypes, enabling precise diplotyping, and disease allele classification. 


September 7, 2021  |  

Resolving Complex Pathogenic Alleles using HiFi Long-Range Amplicon Data and a New Clustering Algorithm

Many genetic diseases are mapped to structurally complex loci. These regions contain highly similar paralogous alleles (>99% identity) that span kilobases within the human genome. Comprehensive screening for pathogenic variants is incomplete and labor intensive using short-reads or optical mapping. In contrast, long-range amplification and PacBio HiFi sequencing fully and directly resolve and phase a wide range of pathogenic variants without inference. To capitalize on the accuracy of HiFi data we designed a new amplicon analysis tool, pbAA. pbAA can rapidly deconvolve a mixture of haplotypes, enabling precise diplotyping, and disease allele classification. 


June 1, 2021  |  

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis.

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. A 2 kb SMRTbell library only requires a few ng of gDNA when carrier DNA is added to the library. The resulting libraries can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base-modification analysis. The entire process can be done in less than 3 days by standard laboratory personnel. This approach is particularly important for the analysis of metagenomic communities, in which genomic DNA is often limited. From these samples, full-length 16S amplicons can be generated, prepped with the standard SMRTbell library prep protocol, and sequenced. Alternatively, a 2 kb sheared library, made from a few ng of input DNA, can also be used to elucidate the microbial composition of a community, and may provide information about biochemical pathways present in the sample. In both these cases, 1-2 kb reads with >99% accuracy can be obtained from Circular Consensus Sequencing.


June 1, 2021  |  

Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine.

Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan Underground Iron Mine harbor active microbial communities. To characterize these assemblages, we performed shotgun metagenomics of native and enriched samples. Following enrichment on poised electrodes and long read sequencing, we recovered from the metagenome the closed, circular genome of a novel Desulfuromonas sp. with remarkable genomic features that were not fully resolved by short read assembly alone. This organism was essentially absent in unenriched Soudan communities, indicating that electrodes are highly selective for putative metal reducers. Native community metagenomes suggest that carbon cycling is driven by methyl-C1 metabolism, in particular methylotrophic methanogenesis. Our results highlight the promising potential for long reads in metagenomic surveys of low-diversity environments.


June 1, 2021  |  

Comparison of sequencing approaches applied to complex soil metagenomes to resolve proteins of interest

Background: Long-read sequencing presents several potential advantages for providing more complete gene profiling of metagenomic samples. Long reads can capture multiple genes in a single read, and longer reads typically result in assemblies with better contiguity, especially for higher abundance organisms. However, a major challenge with using long reads has been the higher cost per base, which may lead to insufficient coverage of low-abundance species. Additionally, lower single-pass accuracy can make gene discovery for low-abundance organisms difficult. Methods: To evaluate the pros and cons of long reads for metagenomics, we directly compared PacBio and Illumina sequencing on a soil-derived sample, which included spike-in controls of known concentrations of pure referenced samples. For PacBio sequencing, a 10 kb library was sequenced on the Sequel System with 3.0 chemistry. Highly accurate long reads (HiFi reads) with Q20 and higher were generated for downstream analyses using PacBio Circular Consensus Sequencing (CCS) mode. Results were assessed according to the following criteria: DNA extraction capacity, bioinformatics pipeline status, % of proteins with ambiguous AA’s, total unique error-free genes/$1000, total proteins observed in spike-ins/$1000, proteins of interest/$1000, median length of contigs with proteins, and assembly requirements. Results: Both methods had areas of superior performance. DNA extraction capacity was higher for Illumina, the bioinformatics pipeline is well-tested, and there was a lower proportion of proteins with ambiguous AA’s. On the other hand, with PacBio, twice as many unique error-free genes, twice as many total proteins from spike-ins, and ~6 times more proteins of interest were found per $1000 cost. PacBio data produced on average 5 times longer contigs capturing proteins of interest. Additionally, assembly was not required for gene or protein finding, as was the case with Illumina data. Conclusions: In this comparison of PacBio Sequel System with Illumina NextSeq on a complex microbiome, we conclude that the sequencing system of choice may vary, depending on the goals and resources for the project. PacBio sequencing requires a longer DNA extraction method, and the bioinformatics pipeline may require development. On the other hand, the Sequel System generates hundreds of thousands of long HiFi reads per SMRT Cell, producing more genes, more proteins, and longer contigs, thereby offering more information about the metagenomic samples for a lower cost.


June 1, 2021  |  

Improving long-read assembly of microbial genomes and plasmids

Complete, high-quality microbial genomes are very valuable across a broad array of fields, from environmental studies, to human microbiome health, food pathogen surveillance, etc. Long-read sequencing enables accurate resolution of complex microbial genomes and is becoming the new standard. Here we report our novel Microbial Assembly pipeline to facilitate rapid, large-scale analysis of microbial genomes. We sequenced a 48-plex library with one SMRT Cell 8M on the Sequel II System, demultiplexed, then analyzed the data with Microbial Assembly.


April 9, 2021  |  

Creating Core Demand with HiFi Sequencing

In this video, Dave Miller from PacBio and Alvaro Hernandez PhD from the University of Illinois Urbana- Champaign discuss how to create Core Lab demand using PacBio highly accurate long-read,…


April 21, 2020  |  

Nine Novel Phages from a Plateau Lake in Southwest China: Insights into Aeromonas Phage Diversity.

Aeromonas species are common pathogens of fish and some of them can opportunistically cause infectious diseases in humans. The overuse of antibiotics has led to the emergence of bacterial drug-resistance. To date, only 51 complete genome sequences of Aeromonas phages are available in GenBank. Here, we report the isolation of nine Aeromonas phages from a plateau lake in China. The protein cluster, dot plot and ANI analyses were performed on all 60 currently sequenced Aeromonas phage genomes and classified into nine clusters and thirteen singletons. Among the nine isolated phages, the DNA-packaging strategy of cluster 2L372D (including 2L372D, 2L372X, 4L372D, 4L372XY) is unknown, while the other five phages use the headful (P22/Sf6) DNA-packaging strategy. Notably, the isolated phages with larger genomes conservatively encode auxiliary metabolism genes, DNA replication and metabolism genes, while in smaller phage genomes, recombination-related genes were conserved. Finally, we propose a new classification scheme for Aeromonas phages.


October 23, 2019  |  

High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system.

Coral reefs are a complex ecosystem consisting of coral animals and a vast array of associated symbionts including the dinoflagellate Symbiodinium, fungi, viruses and bacteria. Several studies have highlighted the importance of coral-associated bacteria and their fundamental roles in fitness and survival of the host animal. The scleractinian coral Porites lutea is one of the dominant reef-builders in the Indo-West Pacific. Currently, very little is known about the composition and structure of bacterial communities across P. lutea reefs. The purpose of this study is twofold: to demonstrate the advantages of using PacBio circular consensus sequencing technology in microbial community studies and to investigate the diversity and structure of P. lutea-associated microbiome in the Indo-Pacific. This is the first metagenomic study of marine environmental samples that utilises the PacBio sequencing system to capture full-length 16S rRNA sequences. We observed geographically distinct coral-associated microbial profiles between samples from the Gulf of Thailand and Andaman Sea. Despite the geographical and environmental impacts on the coral-host interactions, we identified a conserved community of bacteria that were present consistently across diverse reef habitats. Finally, we demonstrated the superior performance of full-length 16S rRNA sequences in resolving taxonomic uncertainty of coral associates at the species level.


September 22, 2019  |  

An environmental bacterial taxon with a large and distinct metabolic repertoire.

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. ‘Entotheonella’ spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum ‘Tectomicrobia’. The pronounced bioactivities and chemical uniqueness of ‘Entotheonella’ compounds provide significant opportunities for ecological studies and drug discovery.


September 22, 2019  |  

Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments.


September 22, 2019  |  

Differential responses of total and active soil microbial communities to long-term experimental N deposition

Abstract The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (-8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.