Menu
July 7, 2019  |  

First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland.

The emergence and worldwide spread of carbapenemase-producing Enterobacteriaceae is of great concern to public health services. The aim of this study was to investigate the occurrence of carbapenemase-producing Enterobacteriaceae in fresh vegetables and spices imported from Asia to Switzerland.Twenty-two different fresh vegetable samples were purchased in March 2015 from different retail shops specializing in Asian food. The vegetables included basil leaves, bergamont leaves, coriander, curry leaves, eggplant and okra (marrow). Samples had been imported from Thailand, the Socialist Republic of Vietnam and India. After an initial enrichment-step, carbapenemase-producing Enterobacteriaceae were isolated from two carbapenem-containing selective media (SUPERCARBA II and Brilliance CRE Agar). Isolates were screened by PCR for the presence of bla KPC, bla NDM, bla OXA-48-like and bla VIM. An OXA-181-producing Klebsiella variicola was isolated in a coriander sample with origin Thailand/Vietnam. The bla OXA-181 gene was encoded in a 14’027 bp region flanked by two IS26-like elements on a 51-kb IncX3-type plasmid.The results of this study suggest that the international production and trade of fresh vegetables constitute a possible route for the spread of carbapenemase-producing Enterobacteriaceae. The presence of carbapenemase-producing organisms in the food supply is alarming and an important food safety issue.


July 7, 2019  |  

Genomic identification of nitrogen-fixing Klebsiella variicola, K. pneumoniae and K. quasipneumoniae.

It was difficult to differentiate Klebsiella pneumoniae, K. quasipneumoniae and K. variicola by biochemical and phenotypic tests. Genomics increase the resolution and credibility of taxonomy for closely-related species. Here, we obtained the complete genome sequence of the K. variicola type strain DSM 15968(T) (=F2R9(T) ). The genome of the type strain is a circular chromosome of 5,521,203?bp with 57.56% GC content. From 540 Klebsiella strains whose genomes had been publicly available as at 3 March 2015, we identified 21 strains belonging to K. variicola and 8 strains belonging to K. quasipneumoniae based on the genome average nucleotide identities (ANI). All the K. variicola strains, one K. pneumoniae strain and five K. quasipneumoniae strains contained nitrogen-fixing genes. A phylogenomic analysis showed clear species demarcations for these nitrogen-fixing bacteria. In accordance with the key biochemical characteristics of K. variicola, the idnO gene encoding 5-keto-D-gluconate 5-reductase for utilization of 5-keto-D-gluconate and the sorCDFBAME operon for catabolism of L-sorbose were present whereas the rbtRDKT operon for catabolism of adonitol was absent in the genomes of K. variicola strains. Therefore, the genomic analyses supported the ANI-based species delineation; the genome sequence of the K. variicola type strain provides the reference genome for genomic identification of K. variicola, which is a nitrogen-fixing species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Fosfomycin resistance in Escherichia coli, Pennsylvania, USA.

Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum ß-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.


July 7, 2019  |  

Clonal dissemination of Enterobacter cloacae harboring blaKPC-3 in the upper midwestern United States.

Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583-1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening CP-CRE from patients throughout Minnesota. Here, we analyzed a retrospective group of CP-E. cloacae isolates (n = 34) collected between 2009 and 2013. Whole-genome sequencing and analysis revealed that 32 of the strains were clonal, belonging to the ST171 clonal complex and differing collectively by 211 single-nucleotide polymorphisms, and it revealed a dynamic clone under positive selection. The phylogeography of these strains suggests that this clone existed in eastern North Dakota and western Minnesota prior to 2009 and subsequently was identified in the Minneapolis and St. Paul metropolitan area. All strains harbored identical IncFIA-like plasmids conferring a CP-CRE phenotype and an additional IncX3 plasmid. In a single patient with multiple isolates submitted over several months, we found evidence that these plasmids had transferred from the E. cloacae clone to an Escherichia coli ST131 bacterium, rendering it as a CP-CRE. The spread of this clone throughout the upper midwestern United States is unprecedented for E. cloacae and highlights the importance of continued surveillance to identify such threats to human health. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Genomic epidemiology of an endoscope-associated outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae.

Increased incidence of infections due to Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) was noted among patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) at a single hospital. An epidemiologic investigation identified KPC-Kp and non-KPC-producing, extended-spectrum ß-lactamase (ESBL)-producing Kp in cultures from 2 endoscopes. Genotyping was performed on patient and endoscope isolates to characterize the microbial genomics of the outbreak. Genetic similarity of 51 Kp isolates from 37 patients and 3 endoscopes was assessed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Five patient and 2 endoscope isolates underwent whole genome sequencing (WGS). Two KPC-encoding plasmids were characterized by single molecule, real-time sequencing. Plasmid diversity was assessed by endonuclease digestion. Genomic and epidemiologic data were used in conjunction to investigate the outbreak source. Two clusters of Kp patient isolates were genetically related to endoscope isolates by PFGE. A subset of patient isolates were collected post-ERCP, suggesting ERCP endoscopes as a possible source. A phylogeny of 7 Kp genomes from patient and endoscope isolates supported ERCP as a potential source of transmission. Differences in gene content defined 5 ST258 subclades and identified 2 of the subclades as outbreak-associated. A novel KPC-encoding plasmid, pKp28 helped define and track one endoscope-associated ST258 subclade. WGS demonstrated high genetic relatedness of patient and ERCP endoscope isolates suggesting ERCP-associated transmission of ST258 KPC-Kp. Gene and plasmid content discriminated the outbreak from endemic ST258 populations and assisted with the molecular epidemiologic investigation of an extended KPC-Kp outbreak.


July 7, 2019  |  

Molecular characterization using next generation sequencing of plasmids containing blaNDM-7 in Enterobacteriaceae from Calgary, Canada.

Enterobacteriaceae with blaNDM-7 is relatively uncommon and had previously been described in Europe, India, USA and Japan. This study describes the characteristics of Enterobacteriaceae [Klebsiella pneumoniae (n=2), Escherichia coli (n=2), Serratia marcescens (n=1), Enterobacter hormaechei (n=1)] with blaNDM-7 obtained in 4 patients from Calgary, Canada during 2013-4. The 46,161 bp IncX3 plasmids with blaNDM-7 are highly similar to other blaNDM-harboring IncX3 plasmids and interestingly, showed identical structures within the different isolates. This finding may indicate horizontal transmission within our health region or may indicate contact with individuals from endemic areas within the hospital setting. Patients infected or colonized with bacteria containing blaNDM-7 IncX3 plasmids will generate infection control challenges. Epidemiological and molecular studies are required to better understand the dynamics of transmission, risk factors and reservoirs for bacteria harboring blaNDM-7. To the best of our knowledge, this is the first report of S. marcescens, and E. hormaechei with blaNDM-7. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Kosakonia sacchari type strain SP1(T.).

Kosakonia sacchari sp. nov. is a new species within the new genus Kosakonia, which was included in the genus Enterobacter. K sacchari is a nitrogen-fixing bacterium named for its association with sugarcane (Saccharum officinarum L.). K sacchari bacteria are Gram-negative, aerobic, non-spore-forming, motile rods. Strain SP1(T) (=CGMCC1.12102(T)=LMG 26783(T)) is the type strain of the K sacchari sp. nov and is able to colonize and fix N2 in association with sugarcane plants, thus promoting plant growth. Here we summarize the features of strain SP1(T) and describe its complete genome sequence. The genome contains a single chromosome and no plasmids, 4,902,024 nucleotides with 53.7% GC content, 4,460 protein-coding genes and 105 RNA genes including 22 rRNA genes, 82 tRNA genes, and 1 ncRNA gene.


July 7, 2019  |  

Complete genome of the switchgrass endophyte Enterobacter clocace P101.

The Enterobacter cloacae complex is genetically very diverse. The increasing number of complete genomic sequences of E. cloacae is helping to determine the exact relationship among members of the complex. E. cloacae P101 is an endophyte of switchgrass (Panicum virgatum) and is closely related to other E. cloacae strains isolated from plants. The P101 genome consists of a 5,369,929 bp chromosome. The chromosome has 5,164 protein-coding regions, 100 tRNA sequences, and 8 rRNA operons.


July 7, 2019  |  

Genome sequences of two carbapenemase-resistant Klebsiella pneumoniae ST258 isolates.

Klebsiella pneumoniae, an ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen, has acquired multiple antibiotic resistance genes and is becoming a serious public health threat. Here, we report the genome sequences of two representative strains of K. pneumoniae from the emerging K. pneumoniae carbapenemase (KPC) outbreak in northeast Ohio belonging to sequence type 258 (ST258) (isolates Kb140 and Kb677, which were isolated from blood and urine, respectively). Both isolates harbor a blaKPC gene, and strain Kb140 carries blaKPC-2, while Kb677 carries blaKPC-3. Copyright © 2014 Ramirez et al.


July 7, 2019  |  

Enterobacter asburiae strain L1: complete genome and whole genome optical mapping analysis of a quorum sensing bacterium.

Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.


July 7, 2019  |  

Surveillance of carbapenem-resistant Klebsiella pneumoniae: tracking molecular epidemiology and outcomes through a regional network.

Carbapenem resistance in Gram-negative bacteria is on the rise in the United States. A regional network was established to study microbiological and genetic determinants of clinical outcomes in hospitalized patients with carbapenem-resistant (CR) Klebsiella pneumoniae in a prospective, multicenter, observational study. To this end, predefined clinical characteristics and outcomes were recorded and K. pneumoniae isolates were analyzed for strain typing and resistance mechanism determination. In a 14-month period, 251 patients were included. While most of the patients were admitted from long-term care settings, 28% of them were admitted from home. Hospitalizations were prolonged and complicated. Nonsusceptibility to colistin and tigecycline occurred in isolates from 7 and 45% of the patients, respectively. Most of the CR K. pneumoniae isolates belonged to repetitive extragenic palindromic PCR (rep-PCR) types A and B (both sequence type 258) and carried either blaKPC-2 (48%) or blaKPC-3 (51%). One isolate tested positive for blaNDM-1, a sentinel discovery in this region. Important differences between strain types were noted; rep-PCR type B strains were associated with blaKPC-3 (odds ratio [OR], 294; 95% confidence interval [CI], 58 to 2,552; P < 0.001), gentamicin nonsusceptibility (OR, 24; 95% CI, 8.39 to 79.38; P < 0.001), amikacin susceptibility (OR, 11.0; 95% CI, 3.21 to 42.42; P < 0.001), tigecycline nonsusceptibility (OR, 5.34; 95% CI, 1.30 to 36.41; P = 0.018), a shorter length of stay (OR, 0.98; 95% CI, 0.95 to 1.00; P = 0.043), and admission from a skilled-nursing facility (OR, 3.09; 95% CI, 1.26 to 8.08; P = 0.013). Our analysis shows that (i) CR K. pneumoniae is seen primarily in the elderly long-term care population and that (ii) regional monitoring of CR K. pneumoniae reveals insights into molecular characteristics. This work highlights the crucial role of ongoing surveillance of carbapenem resistance determinants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using Single-Molecule, Real-Time Sequencing.

The whole-genome sequence of a carbapenem-resistant Klebsiella pneumoniae strain, PittNDM01, which coproduces NDM-1 and OXA-232 carbapenemases, was determined in this study. The use of single-molecule, real-time (SMRT) sequencing provided a closed genome in a single sequencing run. K. pneumoniae PittNDM01 has a single chromosome of 5,348,284 bp and four plasmids: pPKPN1 (283,371 bp), pPKPN2 (103,694 bp), pPKPN3 (70,814 bp), and pPKPN4 (6,141 bp). The contents of the chromosome were similar to that of the K. pneumoniae reference genome strain MGH 78578, with the exception of a large inversion spanning 23.3% of the chromosome. In contrast, three of the four plasmids are unique. The plasmid pPKPN1, an IncHI1B-like plasmid, carries the blaNDM-1, armA, and qnrB1 genes, along with tellurium and mercury resistance operons. blaNDM-1 is carried on a unique structure in which Tn125 is further bracketed by IS26 downstream of a class 1 integron. The IncFIA-like plasmid pPKPN3 also carries an array of resistance elements, including blaCTX-M-15 and a mercury resistance operon. The ColE-type plasmid pPKPN4 carrying blaOXA-232 is identical to a plasmid previously reported from France. SMRT sequencing was useful in resolving the complex bacterial genomic structures in the de novo assemblies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete sequence of a conjugative IncN plasmid harboring blakpc-2, blashv-12, and qnrS1 from an Escherichia coli sequence type 648 strain

We sequenced a novel conjugative blaKPC-2-harboring IncN plasmid, pYD626E, from an Escherichia coli sequence type 648 strain previously identified in Pittsburgh, Pennsylvania. pYD626E was 72,800 bp long and carried four ß-lactamase genes, blaKPC-2, blaSHV-12, blaLAP-1, and blaTEM-1. In addition, it harbored qnrS1 (fluoroquinolone resistance) and dfrA14 (trimethoprim resistance). The plasmid profile and clinical history supported the in vivo transfer of this plasmid between Klebsiella pneumoniae and Escherichia coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Klebsiella pneumoniae strain ATCC 43816 KPPR1, a rifampin-resistant mutant commonly used in animal, genetic, and molecular biology studies.

Klebsiella pneumoniae is an urgent public health threat due to the spread of carbapenem-resistant strains causing serious, and frequently fatal, infections. To facilitate genetic, molecular, and immunological studies of this pathogen, we report the complete chromosomal sequence of a genetically tractable, prototypical strain used in animal models. Copyright © 2014 Broberg et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.