X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain.

Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for ß-lactamases being of particular concern. Some ß-lactamases are active on a broad spectrum of ß-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-ß-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight ß-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this…

Read More »

Friday, July 19, 2019

Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals.

Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to characterize strain diversity and the bla(KPC) genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a division of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular polysaccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The bla(KPC) gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations coexist within the same hospitals over time. Copyright © 2014, American…

Read More »

Friday, July 19, 2019

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full…

Read More »

Friday, July 19, 2019

Vertical transmission of highly similar bla CTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid.

The purpose of this study was to characterize sets of extended-spectrum ß-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter.Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis.Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder…

Read More »

Friday, July 19, 2019

Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier.

Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases – those lacking the cognate restriction endonuclease – facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis…

Read More »

Friday, July 19, 2019

Genome-wide methylation patterns in Salmonella enterica subsp. enterica serovars.

The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT) DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A) methylated motifs, one N4-methylcytosine (m4C) motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases…

Read More »

Friday, July 19, 2019

Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition.

Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions,…

Read More »

Friday, July 19, 2019

Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae.

Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene,…

Read More »

Friday, July 19, 2019

Nested Russian doll-like genetic mobility drives rapid dissemination of the Carbapenem resistance gene blaKPC

The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested…

Read More »

Friday, July 19, 2019

Initial assessment of the molecular epidemiology of blaNDM-1 in Colombia.

We report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located 193Kb-Inc FIA, 178Kb-Inc A/C2 and 47Kb (unknown Inc type) plasmids. MLST revealed that isolates belong to ST10 (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandA. nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with 3 copies ofblaNDM-1) and a recombination “hotspot” for the acquisition of new resistance determinants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Read More »

Friday, July 19, 2019

IncFIIk plasmid harbouring an amplification of 16S rRNA methyltransferase-encoding gene rmtH associated with mobile element ISCR2.

To investigate the resistance mechanisms and genetic support underlying the high resistance level of the Klebsiella pneumoniae strain CMUL78 to aminoglycoside and ß-lactam antibiotics.Antibiotic susceptibility was assessed by the disc diffusion method and MICs were determined by the microdilution method. Antibiotic resistance genes and their genetic environment were characterized by PCR and Sanger sequencing. Plasmid contents were analysed in the clinical strain and transconjugants obtained by mating-out assays. Complete plasmid sequencing was performed with PacBio and Illumina technology.Strain CMUL78 co-produced the 16S rRNA methyltransferase (RMTase) RmtH, carbapenemase OXA-48 and ESBL SHV-12. The rmtH- and blaSHV-12-encoding genes were harboured by a…

Read More »

Friday, July 19, 2019

Mechanisms of evolution in high-consequence drug resistance plasmids.

The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts…

Read More »

Friday, July 19, 2019

Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure and resistance mechanisms.

Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional…

Read More »

Friday, July 19, 2019

Chromosomal integration of the Klebsiella pneumoniae carbapenemase gene, blaKPC, in Klebsiella species is elusive but not rare.

Carbapenemase genes in Enterobacteriaceae are mostly described as being plasmid associated. However, the genetic context of carbapenemase genes is not always confirmed in epidemiological surveys, and the frequency of their chromosomal integration therefore is unknown. A previously sequenced collection of blaKPC-positive Enterobacteriaceae from a single U.S. institution (2007 to 2012; n = 281 isolates from 182 patients) was analyzed to identify chromosomal insertions of Tn4401, the transposon most frequently harboring blaKPC Using a combination of short- and long-read sequencing, we confirmed five independent chromosomal integration events from 6/182 (3%) patients, corresponding to 15/281 (5%) isolates. Three patients had isolates identified…

Read More »

1 2 3 7

Subscribe for blog updates:

Archives