Menu
April 21, 2020  |  

The Versatility of SMRT Sequencing.

The adoption of single molecule real-time (SMRT) sequencing [1] is becoming widespread, not only in basic science, but also in more applied areas such as agricultural, environmental, and medical research. SMRT sequencing offers important advantages over current short-read DNA sequencing technologies, including exceptionally long read lengths (20 kb or more), unparalleled consensus accuracy, and the ability to sequence native, non-amplified, DNA molecules. These sequencing characteristics enable creation of highly accurate de novo genome assemblies, characterization of complex structural variation, direct characterization of nucleotide base modifications, full-length RNA isoform sequencing, phasing of genetic variants, low frequency mutation detection, and clonal evolution determination [2,3]. This Special Issue of Genes is a collection of articles showcasing the latest developments and the breadth of applications enabled by SMRT sequencing technology.


July 19, 2019  |  

Whole genome?

The reference human genome assembly is remarkable in its completeness and usefulness in research. However, the range of allelic variation in the human population is not well described by a haploid assembly with a profusion of alternative loci. Homozygous regions and the use of multiple sequencing technologies increasingly have roles in strategies for identifying regulatory and trait-associated variation.


July 19, 2019  |  

Genome sequencing: Long reads for a short plant

The genome of a tiny resurrection plant has been sequenced using PacBio’s long-read single-molecule real-time sequencing technology, aiding the understanding of extreme desiccation tolerance. The genome contiguity is comparable to that of genomes sequenced using far more laborious approaches.


July 19, 2019  |  

A diamond in the ruff.

Reference genomes are only as valuable as the scientific questions they can address. The ruff genome sequence papers exemplify three of the most important aspects of a useful genome: new biological insights, a high-quality resource and population variation data.


July 7, 2019  |  

Real-time sequencing.

This month’s Genome Watch describes the impact of next-generation sequencing on the ‘real-time’ analysis of pathogen genomes during outbreaks.


July 7, 2019  |  

Whole-genome sequencing: opportunities and challenges for public health, food-borne outbreak investigations, and the global food supply.

Food-borne disease is burdensome, af- fecting 1 in 6 persons or an estimated 48 million ill, 128 000 hospitalized, and 3000 deaths in the United States annually. In addition, societal costs from lost lives, lost labor, lost wages, and even lost revenue in the food industry are substan- tial. Globally the burden is even higher, and multinational outbreaks due to the global movement of contaminated foods are being described increasingly. The glo- bal food supply links nations and econo- mies, emphasizing the need to view food safety with an integrated farm-to-fork lens. As predicted, advances in molecular techniques and information management have been transformative for food-borne disease investigation.


July 7, 2019  |  

Resistance from relatives.

Crops are made resistant to pathogens such as wheat stem rust, Asian soybean rust and potato late blight by methods to access the pool of resistance genes present in related plants.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.