Menu
July 7, 2019  |  

Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis.

Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss-cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria-plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant-cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria-feathermoss symbiosis.


July 7, 2019  |  

Assembly and characterization of the MHC class I region of the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis).

The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) is the sole freshwater subspecies of N. asiaeorientalis and is now critically endangered. Major histocompatibility complex (MHC) is a family of highly polymorphic genes that play an important immunological role in antigen presentation in the vertebrates. Currently, however, little is known about MHC region in the genome of the YFP, which hampers conservation genetics and evolutionary ecology study using MHC genes. In this work, a nucleotide sequence of 774,811 bp covering the YFP MHC class I region was obtained by screening a YFP bacterial artificial chromosome (BAC) library, followed by sequencing and assembly of positive BAC clones. A total of 45 genes were successfully annotated, of which four were MHC class I genes. There are high similarities among the four YFP MHC class I genes (>94 %). Divergence in the coding region of the four YFP MHC class I genes is mainly localized to exons 2 and 3, which encode the antigen-binding sites of MHC class I genes. Additionally, comparison of the MHC structure in YFP to those of cattle, sheep, and pig showed that MHC class I genes are located in genome regions with regard to the conserved genes, and the YFP contains the fewest MHC class I genes among these species. This is the first report characterizing a cetacean MHC class I region and describing its organization, which would be valuable for further investigation of adaptation in natural populations of the YFP and other cetaceans.


July 7, 2019  |  

Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha.

Transposable elements are a major player contributing to genetic variation and shaping genome evolution. Multiple independent transposon domestication events have occurred in ciliates, recruiting transposases to key roles in cellular processes. In the ciliate Oxytricha trifallax, the telomere-bearing elements (TBE), a Tc1/mariner transposon, occupy a significant portion of the germline genome and are involved in programmed genome rearrangements that produce a transcriptionally active somatic nucleus from a copy of the germline nucleus during development.Here we provide a thorough characterization of the distribution and sequences of TBE transposons in the Oxytricha germline genome. We annotate more than 10,000 complete and 24,000 partial TBE sequences. TBEs cluster into four major families and display a preference for either insertion into DNA segments that are retained in the somatic genome or their maintenance at such sites. The three TBE-encoded genes in all four families display dN/dS ratios much lower than 1, suggesting genome-wide purifying selection. We also identify TBE homologs in other ciliate species for phylogenomic analysis.This paper provides genome-wide characterization of a major class of ciliate transposons. Phylogenomic analysis reveals selective constraints on transposon-encoded genes, shedding light on the evolution and domesticated functions of these transposons.


July 7, 2019  |  

Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities.

Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.


July 7, 2019  |  

Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions.

Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity.


July 7, 2019  |  

Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum.

The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes. C. geophilum still holds a significant set of genes in categories known to be involved in pathogenesis and shows an increased genome size due to transposable elements proliferation. Transcript profiling revealed a striking upregulation of membrane transporters, including aquaporin water channels and sugar transporters, and mycorrhiza-induced small secreted proteins (MiSSPs) in ectomycorrhiza compared with free-living mycelium. The frequency with which this symbiont is found on tree roots and its possible role in water and nutrient transport in symbiosis calls for further studies on mechanisms of host and environmental adaptation.


July 7, 2019  |  

Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage.

Genome assemblies that are accurate, complete and contiguous are essential for identifying important structural and functional elements of genomes and for identifying genetic variation. Nevertheless, most recent genome assemblies remain incomplete and fragmented. While long molecule sequencing promises to deliver more complete genome assemblies with fewer gaps, concerns about error rates, low yields, stringent DNA requirements and uncertainty about best practices may discourage many investigators from adopting this technology. Here, in conjunction with the platinum standard Drosophila melanogaster reference genome, we analyze recently published long molecule sequencing data to identify what governs completeness and contiguity of genome assemblies. We also present a hybrid meta-assembly approach that achieves remarkable assembly contiguity for both Drosophila and human assemblies with only modest long molecule sequencing coverage. Our results motivate a set of preliminary best practices for obtaining accurate and contiguous assemblies, a ‘missing manual’ that guides key decisions in building high quality de novo genome assemblies, from DNA isolation to polishing the assembly.© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019  |  

Genetic basis of priority effects: insights from nectar yeast.

Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects.© 2016 The Author(s).


July 7, 2019  |  

Towards integration of population and comparative genomics in forest trees.

The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


July 7, 2019  |  

Decay of sexual trait genes in an asexual parasitoid wasp.

Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.