Menu
July 19, 2019  |  

Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila.

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a ‘symbiosis toolkit’, with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


July 7, 2019  |  

Complete genome sequence of Microcystis aeruginosa NIES-2549, a bloom-forming cyanobacterium from Lake Kasumigaura, Japan.

Microcystis aeruginosa NIES-2549 is a freshwater bloom-forming cyanobacterium isolated from Lake Kasumigaura, Japan. We report the complete 4.29-Mbp genome sequence of NIES-2549 and its annotation and discuss the genetic diversity of M. aeruginosa strains. This is the third genome sequence of M. aeruginosa isolated from Lake Kasumigaura. Copyright © 2015 Yamaguchi et al.


July 7, 2019  |  

Role of restriction-modification systems in prokaryotic evolution and ecology

Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.


July 7, 2019  |  

Organellar genomes of white spruce (Picea glauca): assembly and annotation.

The genome sequences of the plastid and mitochondrion of white spruce (Picea glauca) were assembled from whole-genome shotgun sequencing data using ABySS. The sequencing data contained reads from both the nuclear and organellar genomes, and reads of the organellar genomes were abundant in the data as each cell harbors hundreds of mitochondria and plastids. Hence, assembly of the 123-kb plastid and 5.9-Mb mitochondrial genomes were accomplished by analyzing data sets primarily representing low coverage of the nuclear genome. The assembled organellar genomes were annotated for their coding genes, ribosomal RNA, and transfer RNA. Transcript abundances of the mitochondrial genes were quantified in three developmental tissues and five mature tissues using data from RNA-seq experiments. C-to-U RNA editing was observed in the majority of mitochondrial genes, and in four genes, editing events were noted to modify ACG codons to create cryptic AUG start codons. The informatics methodology presented in this study should prove useful to assemble organellar genomes of other plant species using whole-genome shotgun sequencing data. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Exploring the genomic traits of fungus-feeding bacterial genus Collimonas.

Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities.In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7 % of the genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase, phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities.Overall our results indicated that Collimonas genomes harbour many genes encoding for novel enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.


July 7, 2019  |  

The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera.

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393?Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140?My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.


July 7, 2019  |  

The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio.

The advent of next-generation sequencing (NGS) technologies has transformed the way microsatellites are isolated for ecological and evolutionary investigations. Recent attempts to employ NGS for microsatellite discovery have used the 454, Illumina, and Ion Torrent platforms, but other methods including single-molecule real-time DNA sequencing (Pacific Biosciences or PacBio) remain viable alternatives. We outline a workflow from sequence quality control to microsatellite marker validation in three plant species using PacBio circular consensus sequencing (CCS). We then evaluate the performance of PacBio CCS in comparison with other NGS platforms for microsatellite isolation, through simulations that focus on variations in read length, read quantity and sequencing error rate. Although quality control of CCS reads reduced microsatellite yield by around 50%, hundreds of microsatellite loci that are expected to have improved conversion efficiency to functional markers were retrieved for each species. The simulations quantitatively validate the advantages of long reads and emphasize the detrimental effects of sequencing errors on NGS-enabled microsatellite development. In view of the continuing improvement in read length on NGS platforms, sequence quality and the corresponding strategies of quality control will become the primary factors to consider for effective microsatellite isolation. Among current options, PacBio CCS may be optimal for rapid, small-scale microsatellite development due to its flexibility in scaling sequencing effort, while platforms such as Illumina MiSeq will provide cost-efficient solutions for multispecies microsatellite projects. © 2014 John Wiley & Sons Ltd.


July 7, 2019  |  

Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus.

The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity-both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography.


July 7, 2019  |  

Whole-exome targeted sequencing of the uncharacterized pine genome.

The large genome size of many species hinders the development and application of genomic tools to study them. For instance, loblolly pine (Pinus taeda L.), an ecologically and economically important conifer, has a large and yet uncharacterized genome of 21.7 Gbp. To characterize the pine genome, we performed exome capture and sequencing of 14 729 genes derived from an assembly of expressed sequence tags. Efficiency of sequence capture was evaluated and shown to be similar across samples with increasing levels of complexity, including haploid cDNA, haploid genomic DNA and diploid genomic DNA. However, this efficiency was severely reduced for probes that overlapped multiple exons, presumably because intron sequences hindered probe:exon hybridizations. Such regions could not be entirely avoided during probe design, because of the lack of a reference sequence. To improve the throughput and reduce the cost of sequence capture, a method to multiplex the analysis of up to eight samples was developed. Sequence data showed that multiplexed capture was reproducible among 24 haploid samples, and can be applied for high-throughput analysis of targeted genes in large populations. Captured sequences were de novo assembled, resulting in 11 396 expanded and annotated gene models, significantly improving the knowledge about the pine gene space. Interspecific capture was also evaluated with over 98% of all probes designed from P. taeda that were efficient in sequence capture, were also suitable for analysis of the related species Pinus elliottii Engelm.© 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.


July 7, 2019  |  

Absence of genome reduction in diverse, facultative endohyphal bacteria.

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.


July 7, 2019  |  

Untangling heteroplasmy, structure, and evolution of an atypical mitochondrial genome by PacBio Sequencing.

The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ~14 kb linear monomer and a ~28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers-a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction. Copyright © 2017 by the Genetics Society of America.


July 7, 2019  |  

PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.

High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable.© 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Novel urease-negative Helicobacter sp. ‘H. enhydrae sp. nov.’ isolated from inflamed gastric tissue of southern sea otters.

A total of 31 sea otters Enhydra lutris nereis found dead or moribund (and then euthanized) were necropsied in California, USA. Stomach biopsies were collected and transected with equal portions frozen or placed in formalin and analyzed histologically and screened for Helicobacter spp. in gastric tissue. Helicobacter spp. were isolated from 9 sea otters (29%); 58% (18 of 31) animals were positive for helicobacter by PCR. The Helicobacter sp. was catalase- and oxidase-positive and urease-negative. By electron microscopy, the Helicobacter sp. had lateral and polar sheathed flagella and had a slightly curved rod morphology. 16S and 23S rRNA sequence analyses of all ‘H. enhydrae’ isolates had similar sequences, which clustered as a novel Helicobacter sp. closely related to H. mustelae (96-97%). The genome sequence of isolate MIT 01-6242 was assembled into a single ~1.6 Mb long contig with a 40.8% G+C content. The annotated genome contained 1699 protein-coding sequences and 43 RNAs, including 65 genes homologous to known Helicobacter spp. and Campylobacter spp. virulence factors. Histological changes in the gastric tissues extended from mild cystic degeneration of gastric glands to severe mucosal erosions and ulcers. Silver stains of infected tissues demonstrated slightly curved bacterial rods at the periphery of the gastric ulcers and on the epithelial surface of glands. The underlying mucosa and submucosa were infiltrated by low numbers of neutrophils, macrophages, and lymphocytes, with occasional lymphoid aggregates and well-defined lymphoid follicles. This is the second novel Helicobacter sp., which we have named ‘H. enhydrae’, isolated from inflamed stomachs of mustelids, the first being H. mustelae from a ferret.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.