July 7, 2019  |  

Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise.

A novel strictly anaerobic, hyperthermophilic archaeon, designated strain CDGS(T), was isolated from a deep-sea hydrothermal vent in the Cayman Trough at 4964m water depth. The novel isolate is obligate anaerobe and grows chemoorganoheterotrophically with stimulation of growth by sulphur containing compounds. Its growth is optimal at 75°C, pH 6.0 and under a pressure of 50MPa. It possesses the broadest hydrostatic pressure range for growth that has ever been described for a microorganism. Its genomic DNA G+C content is 51.11 mol%. The novel isolate belongs to the genus Thermococcus. Phylogenetic analyses indicated that it is most closely related to Thermococcus barossii DSM17882(T) based on its 16S rRNA gene sequence, and to ‘Thermococcus onnurineus’ NA1 based on its whole genome sequence. The average nucleotide identity scores with these strains are 77.66% for T. barossii and 84.84% for ‘T. onnurineus’, respectively. Based on the draft whole genome sequence and phenotypic characteristics, strain CDGS(T) is suggested to be separated into a novel species within the genus Thermococcus, with proposed name Thermococcus piezophilus (type strain CDGS(T)=ATCC TSD-33(T)=UBOCC 3296(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.

July 7, 2019  |  

Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules.

Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules.In a fine structural study of the S. americanum genomes, the chromosomes, megaplasmids and symbiotic plasmids were highly conserved and syntenic, with the exception of the smaller plasmid, which appeared unrelated. The symbiotic tract of CCGM7 appeared more disperse, possibly due to the action of transposases. The chromosomes of seed strains had less transposases and strain-specific genes. The seed strains CCGM1 and CCGM7 shared about half of their genomes with their closest strains (3353 and 3472 orthologs respectively), but a large fraction of the rest also had homology with other rhizobia. They contained 315 and 204 strain-specific genes, respectively, particularly abundant in the functions of transcription, motility, energy generation and cofactor biosynthesis. The proteomes of seed and nodule strains were obtained and showed a particular profile for each of the strains. About 82 % of the proteins in the comparisons appeared similar. Forty of the most abundant proteins in each strain were identified; these proteins in seed strains were involved in stress responses and coenzyme and cofactor biosynthesis and in the nodule strains mainly in central processes. Only 3 % of the abundant proteins had hypothetical functions.Functions that were enriched in the genomes and proteomes of seed strains possibly participate in the successful occupancy of the new niche. The genome of the strains had features possibly related to their presence in the seeds. This study helps to understand traits of rhizobia involved in seed adaptation.

July 7, 2019  |  

Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae).

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA. Copyright © 2016 Ramírez-Puebla et al.

July 7, 2019  |  

Selvamicin, an atypical antifungal polyene from two alternative genomic contexts.

The bacteria harbored by fungus-growing ants produce a variety of small molecules that help maintain a complex multilateral symbiosis. In a survey of antifungal compounds from these bacteria, we discovered selvamicin, an unusual antifungal polyene macrolide, in bacterial isolates from two neighboring ant nests. Selvamicin resembles the clinically important antifungals nystatin A1 and amphotericin B, but it has several distinctive structural features: a noncationic 6-deoxymannose sugar at the canonical glycosylation site and a second sugar, an unusual 4-O-methyldigitoxose, at the opposite end of selvamicin’s shortened polyene macrolide. It also lacks some of the pharmacokinetic liabilities of the clinical agents and appears to have a different target. Whole genome sequencing revealed the putative type I polyketide gene cluster responsible for selvamicin’s biosynthesis including a subcluster of genes consistent with selvamicin’s 4-O-methyldigitoxose sugar. Although the selvamicin biosynthetic cluster is virtually identical in both bacterial producers, in one it is on the chromosome, in the other it is on a plasmid. These alternative genomic contexts illustrate the biosynthetic gene cluster mobility that underlies the diversity and distribution of chemical defenses by the specialized bacteria in this multilateral symbiosis.

July 7, 2019  |  

Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe.

A major roadblock to understanding how microbes in the gastrointestinal tract colonize and influence the physiology of their hosts is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. We describe the application of population-based genomic sequencing after chemical mutagenesis to map bacterial genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility. Surprisingly, less than half of these genes were annotated as motility-related based on sequence homologies. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. In the process, we reannotated genes belonging to a broad family of diguanylate cyclases and phosphodiesterases to highlight their specific role in motility and assigned functions to uncharacterized genes. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host. These results indicate that genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains to define the role of genes in complex environments can be accomplished in bacteria without the development of species-specific molecular genetic tools.

July 7, 2019  |  

Finished genome sequence of a polyurethane-degrading Pseudomonas isolate.

Pseudomonas sp. strain WP001 is a laboratory isolate capable of polyurethane polymer degradation and harbors a predicted lipase precursor gene. The genome of strain WP001 is 6.15?Mb in size and is composed of seven scaffolds with a G+C content of 60.54%. Strain WP001 is closely related to Pseudomonas fluorescens based on ribosomal DNA comparisons. Copyright © 2018 Stamps et al.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.