Menu
July 7, 2019  |  

GenBank.

GenBank(®) (www.ncbi.nlm.nih.gov/genbank/) is a comprehensive database that contains publicly available nucleotide sequences for 370 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or the NCBI Submission Portal. GenBank staff assign accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Nucleotide database, which links to related information such as taxonomy, genomes, protein sequences and structures, and biomedical journal literature in PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. Recent updates include changes to policies regarding sequence identifiers, an improved 16S submission wizard, targeted loci studies, the ability to submit methylation and BioNano mapping files, and a database of anti-microbial resistance genes. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.


July 7, 2019  |  

Complete genome sequence of Acinetobacter sp. strain NCu2D-2 isolated from a mouse.

Whole-genome sequencing of Acinetobacter sp. strain NCu2D-2, isolated from the trachea of a mouse, revealed the presence of a plasmid of 309,964 bp with little overall similarity to known plasmids and enriched in insertion sequences (ISs) closely related to IS elements known from the nosocomial pathogen Acinetobacter baumannii. Copyright © 2017 Blaschke and Wilharm.


July 7, 2019  |  

Neurotrophin biology at NGF 2016: From fundamental science to clinical applications.

In 1986, members of the growing neurotrophin community came together to honor the scientific contributions (and 77th birth- day) of Dr. Rita Levi-Montalcini. The celebration took the form of a conference dedicated to the field birthed by Dr. Levi-Montalcini’s discovery of nerve growth factor (NGF), for which she shared the Nobel Prize later that year with Stanley Cohen. The meeting proved to be a great success, and eventually became an ongoing series. The NGF 2016 meeting, held at the beautiful Asilomar conference cen- ter in Monterey, California, was the 13th meeting in this series, and marked the 30th anniversary of the original meeting. A diverse col- lection of investigators, representing academia and industry across 4 continents, gathered to celebrate the past 30 years, discuss the current state of the art, and share in the excitement of envisioning the next 30 years of neurotrophic factor research and applications.


July 7, 2019  |  

Genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding increased protein quality control mechanisms.

Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation.


July 7, 2019  |  

Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs.

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.© 2017 Lee et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Complete genome sequence of Staphylococcus lutrae ATCC 700373, a potential pathogen isolated from deceased otters.

Despite their relevance to human health, not all staphylococcal species have been characterized. As such, the potential zoonotic threats posed by uninvestigated species and their contribution to the staphylococcal pangenome are unclear. Here, we report the complete genome sequence of Staphylococcus lutrae ATCC 700373, a coagulase-positive species isolated from deceased otters. Copyright © 2017 Veseli et al.


July 7, 2019  |  

A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials.

The toxic lineage (TL) of Lysinibacillus sphaericus has been extensively studied because of its potential biotechnological applications in biocontrol of mosquitoes and bioremediation of toxic metals. We previously proposed that L. sphaericus TL should be considered as a novel species based on a comparative genomic analysis. In the current work, we constructed the first manually curated metabolic reconstruction for this species on the basis of the available genomes. We elucidated the central metabolism of the proposed species and, beyond confirming the reported experimental evidence with genomic a support, we found insights to propose novel applications and traits to be considered in further studies. The strains belonging to this lineage exhibit a broad repertory of genes encoding insecticidal factors, some of them remain uncharacterized. These strains exhibit other unexploited biotechnological important traits, such as lactonases (quorum quenching), toxic metal resistance, and potential for aromatic compound degradation. In summary, this study provides a guideline for further research aimed to implement this organism in biocontrol and bioremediation. Similarly, we highlighted the unanswered questions to be responded in order to gain a deeper understanding of the L. sphaericus TL biology.


July 7, 2019  |  

SMRT Sequencing revealed mitogenome characteristics and mitogenome-wide DNA modification pattern in Ophiocordyceps sinensis.

Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis, with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3, 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis, and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.


July 7, 2019  |  

Complete genome sequence of Pseudoalteromonas piscicida strain DE2-B, a bacterium with broad inhibitory activity toward human and fish pathogens.

Pseudoalteromonas piscicida strain DE2-B is a halophilic bacterium which has broad inhibitory activity toward vibrios and other human and fish pathogens. We report the first closed genome sequence for this species, which consists of two chromosomes (4,128,210 and 1,188,838 bp). Annotation revealed multiple genes encoding proteases with potential antibacterial properties.


July 7, 2019  |  

Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia.

Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism’s physiology, metabolism, and pathogenesis in human disease.


July 7, 2019  |  

Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean.

Frogeye leaf spot, caused by Cercospora sojina Hara, is a common disease of soybean in most soybean-growing countries of the world. In this study, we report a high-quality genome sequence of C. sojina by Single Molecule Real-Time sequencing method. The 40.8-Mb genome encodes 11,655 predicated genes, and 8,474 genes are revealed by RNA sequencing. Cercospora sojina genome contains large numbers of gene clusters that are involved in synthesis of secondary metabolites, including mycotoxins and pigments. However, much less carbohydrate-binding module protein encoding genes are identified in C. sojina genome, when compared with other phytopathogenic fungi. Bioinformatics analysis reveals that C. sojina harbours about 752 secreted proteins, and 233 of them are effectors. During early infection, the genes for metabolite biosynthesis and effectors are significantly enriched, suggesting that they may play essential roles in pathogenicity. We further identify 13 effectors that can inhibit BAX-induced cell death. Taken together, our results provide insights into the infection mechanisms of C. sojina on soybean.© The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena.

DNA N6-methyladenine (6mA) is newly rediscovered as a potential epigenetic mark across a more diverse range of eukaryotes than previously realized. As a unicellular model organism, Tetrahymena thermophila is among the first eukaryotes reported to contain 6mA modification. However, lack of comprehensive information about 6mA distribution hinders further investigations into its function and regulatory mechanism. In this study, we provide the first genome-wide, base pair-resolution map of 6mA in Tetrahymena by applying single-molecule real-time (SMRT) sequencing. We provide evidence that 6mA occurs mostly in the AT motif of the linker DNA regions. More strikingly, these linker DNA regions with 6mA are usually flanked by well-positioned nucleosomes and/or H2A.Z-containing nucleosomes. We also find that 6mA is exclusively associated with RNA polymerase II (Pol II)-transcribed genes, but is not an unambiguous mark for active transcription. These results support that 6mA is an integral part of the chromatin landscape shaped by adenosine triphosphate (ATP)-dependent chromatin remodeling and transcription.© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.