July 7, 2019  |  

Cloning of the ?-secalin gene family in a wheat 1BL/1RS translocation line using BAC clone sequencing

Wheat 1BL/1RS translocation lines are planted around the world for their disease resistance and high yield. Most of them are poor in bread making, which is partially caused by ?-secalins that are encoded by the ?-secalin gene family, which is located on the short arm of rye chromosome 1R (1RS). However, information on the structure and evolution of the ?-secalin gene family is still limited.


July 7, 2019  |  

A pigeonpea gene confers resistance to Asian soybean rust in soybean.

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.


July 7, 2019  |  

Development of molecular markers linked to powdery mildew resistance GenePm4bby combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat.

Powdery mildew resistance genePm4b, originating fromTriticum persicum, is effective against the prevalentBlumeria graminisf. sp.tritici(Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification ofPm4bduring the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3mapping population (237 families) derived from a pair of isogenic lines VPM1/7*Bainong 3217 F4(carryingPm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. FourPm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking thePm4bgene. Three SSR markers,Xics13,Xics43, andXics76, were incorporated in the new genetic linkage map, which locatedPm4bin a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship withBrachypodium distachyonchromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification ofPm4bduring its MAS practice.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.