Menu
July 7, 2019  |  

Precise breakpoint localization of large genomic deletions using PacBio and Illumina next-generation sequencers.

Herein we present the applicability of single-molecule (PacBio RS) and second-generation sequencing technology (Illumina) to the characterization of large genomic deletions. By testing samples previously characterized using a Sanger approach, our methods determined that both next-generation sequencing platforms were able to identify the position of deletion breakpoints. Our results point out various advantages of next-generation sequencing platforms when characterizing genomic deletions; however, special attention must be dedicated to identical sequences flanking the breakpoints, such as poly(N) motifs.


July 7, 2019  |  

Structural variation offers new home for disease associations and gene discovery

Following completion of the Human Genome Project, most studies of human genetic variation have centered on single nucleotide polymorphisms (SNPs). SNPs are numerous in individual genomes and serve as useful genetic markers in association studies across a population. These markers have been leveraged to identify genetic loci for disease risk and draw associations with numerous traits of interest. Despite their usefulness, SNPs do not tell the whole story. For example, most SNPs are associated with only a small increased risk of disease, and they usually cannot identify on their own which genes are causal. This has resulted in what many researchers have referred to as missing or hidden heritability.


July 7, 2019  |  

Hunting structural variants: Population by population

Until recently, most population-scale genome sequencing studies have focused on identifying single nucleotide variants (SNVs) to explore genetic differences between individuals. Like so many SNV-based genome-wide association studies, however, these efforts have had difficulty identifying causative genetic mechanisms underlying most complex functions. More and more, the genomics community has realised that structural variation is likely responsible for many of the traits and phenotypes that scientists have not been able to attribute to SNVs. This class of variants, defined as genetic differences of 50 bp or larger, accounts for most of the DNA sequence differences between any two people. Structural variants (SVs) are also already known to cause many common and rare diseases including ALS, schizophrenia, leukemia, Carney complex, and Huntington’s disease. Despite the importance of SVs, these larger variants have been understudied and underreported compared to their single-nucleotide counterparts. One reason is that they remain difficult to detect. Their length often means they cannot be fully spanned using short sequencing reads. They also often occur in highly repetitive or GC-rich regions of the genome, making them challenging targets. As such, this class of human genetic variation has remained vastly under-explored in global populations and is now ripe for discovery.


July 7, 2019  |  

Coevolution between Nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity.

Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Structural variation detection using next-generation sequencing data: A comparative technical review.

Structural variations (SVs) are mutations in the genome of size at least fifty nucleotides. They contribute to the phenotypic differences among healthy individuals, cause severe diseases and even cancers by breaking or linking genes. Thus, it is crucial to systematically profile SVs in the genome. In the past decade, many next-generation sequencing (NGS)-based SV detection methods have been proposed due to the significant cost reduction of NGS experiments and their ability to unbiasedly detect SVs to the base-pair resolution. These SV detection methods vary in both sensitivity and specificity, since they use different SV-property-dependent and library-property-dependent features. As a result, predictions from different SV callers are often inconsistent. Besides, the noises in the data (both platform-specific sequencing error and artificial chimeric reads) impede the specificity of SV detection. Poorly characterized regions in the human genome (e.g., repeat regions) greatly impact the reads mapping and in turn affect the SV calling accuracy. Calling of complex SVs requires specialized SV callers. Apart from accuracy, processing speed of SV caller is another factor deciding its usability. Knowing the pros and cons of different SV calling techniques and the objectives of the biological study are essential for biologists and bioinformaticians to make informed decisions. This paper describes different components in the SV calling pipeline and reviews the techniques used by existing SV callers. Through simulation study, we also demonstrate that library properties, especially insert size, greatly impact the sensitivity of different SV callers. We hope the community can benefit from this work both in designing new SV calling methods and in selecting the appropriate SV caller for specific biological studies. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium.

Enterococcus faecium is a major nosocomial pathogen causing significant morbidity and mortality worldwide. Assessment of E. faecium using MLST to understand the spread of this organism is an important component of hospital infection control measures. Recent studies, however, suggest that MLST might be inadequate for E. faecium surveillance.To use WGS to characterize recently identified vancomycin-resistant E. faecium (VREfm) isolates non-typeable by MLST that appear to be causing a multi-jurisdictional outbreak in Australia.Illumina NextSeq and Pacific Biosciences SMRT sequencing platforms were used to determine the genome sequences of 66 non-typeable E. faecium (NTEfm) isolates. Phylogenetic and bioinformatics analyses were subsequently performed using a number of in silico tools.Sixty-six E. faecium isolates were identified by WGS from multiple health jurisdictions in Australia that could not be typed by MLST due to a missing pstS allele. SMRT sequencing and complete genome assembly revealed a large chromosomal rearrangement in representative strain DMG1500801, which likely facilitated the deletion of the pstS region. Phylogenomic analysis of this population suggests that deletion of pstS within E. faecium has arisen independently on at least three occasions. Importantly, the majority of these isolates displayed a vancomycin-resistant genotype.We have identified NTEfm isolates that appear to be causing a multi-jurisdictional outbreak in Australia. Identification of these isolates has important implications for MLST-based typing activities designed to monitor the spread of VREfm and provides further evidence supporting the use of WGS for hospital surveillance of E. faecium.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.