Menu
July 7, 2019  |  

Complete genome sequence of Lactobacillus casei LC5, a potential probiotics for atopic dermatitis.

Probiotics are living microorganisms providing health beneficial effect to the host (1). Probiotics have been used for the treatment or prevention of various diseases related to diarrhea (2), cho- lesterol (3) immune function (4), and inflammatory bowel disease (5). In addition, recent study also presents that probiotic bacteria in the Bifidobacterium and Lactobacillus genera are able to have therapeutic effects in the patients of psychological disorders, such as depression, anxiety, and memory (6).


July 7, 2019  |  

Complete genome sequence of the gamma-aminobutyric acid-producing strain Streptococcus thermophilus APC151.

Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.


July 7, 2019  |  

Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resistant, heat-resistant strain FAM21845.

We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays.IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.


July 7, 2019  |  

Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows.

The aim of this study was to investigate the prevalence of blaNDM-5 gene in Escherichia coli isolates from dairy cows and to characterize the molecular traits of the blaNDM-5-positive isolates. A total of 169 cows were sampled (169 feces and 169 raw milk samples) in three dairy farms in Jiangsu Province and 203 E. coli isolates were recovered. Among these strains, three isolates carried blaNDM-5 gene, including one co-harboring mcr-1, which belonged to sequence type 446 and the other two belonged to ST2. Susceptibility testing revealed that the three blaNDM-5-positive isolates showed extensive resistance to antimicrobials. The blaNDM-5 gene was located on a ~46-kb IncX3 transferrable pNDM-MGR194-like plasmid in all three isolates, while mcr-1 was located on a ~260-kb IncHI2 plasmid pXGE1mcr. Competition experiments revealed that acquisition of blaNDM-5 or mcr-1-bearing plasmid can incur fitness cost of bacterial host, however, plasmid stability testing showed that both blaNDM-5 and mcr-1-carrying plasmid maintained stable in the hosts after ten passages without antimicrobial selection. Whole genome sequencing revealed that the mcr-1 gene coexisted with multiple resistance genes in pXGE1mcr and the backbone of this plasmid was similar to that of previously reported mcr-1-positive plasmid pHNSHP45-2. Moreover, pXGE1mcr could be conjugated into clinical NDM-5-positive E. coli isolates in vitro, thereby generating strains that approached pan-resistance. Active surveillance efforts are imperative to monitor the prevalence of blaNDM-5 and mcr-1 in carbapenem-resistant Enterobacteriaceae from dairy farms throughout China. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Streptococcus thermophilus KLDS 3.1003,a strain with high antimicrobial potential against foodborne and vaginal pathogens.

Lactic acid bacteria play increasingly important roles in the food industry. Streptococcus thermophilus KLDS 3.1003 strain was isolated from traditional yogurt in Inner Mongolia, China. It has shown high antimicrobial activity against selected foodborne and vaginal pathogens. In this study, we investigated and analyzed its complete genome sequence. The S. thermophilus KLDS 3.1003 genome comprise of a 1,899,956 bp chromosome with a G+C content of 38.92%, 1,995 genes, and 6 rRNAs. With the exception of S. thermophilus M17TZA496, S. thermophilus KLDS 3.1003 has more tRNAs (amino acid coding genes) compared to some S. thermophilus strains available on the National Centre for Biotechnology Information database. MG-RAST annotation showed that this strain has 317 subsystems with most genes associated with amino acid and carbohydrate metabolism. This strain also has a unique EPS gene cluster containing 23 genes, and may be a mixed dairy starter culture. This information provides more insight into the molecular basis of its potentials for further applications in the dairy and allied industries.


July 7, 2019  |  

Microbial bioinformatics for food safety and production.

In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput ‘omics’ technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety. © The Author 2015. Published by Oxford University Press.


July 7, 2019  |  

Complete genome sequence of Lactobacillus acidophilus MN-BM-F01.

Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. Copyright © 2016 Yang et al.


July 7, 2019  |  

Complete genome sequence of Streptococcus thermophilus MN-BM-A01, a strain with high exopolysaccharides production.

Streptococcus thermophilus MN-BM-A01 (ST MN-BM-A01) (CGMCC No. 11383) was a strain isolated from Yogurt Block in Gansu, China. The yogurt fermented with this strain has good flavor, acidity, and viscosity. Moreover, ST MN-BM-A01 could produce a high level of EPS which can confer the yogurt with improved rheological properties. We reported the complete genome sequence of ST MN-BM-A01 that contains 1,876,516bp encoding 1704 coding sequences (CDSs), 67 tRNA genes and 6 rRNA operons. The genomic sequence indicated that this strain included a 35.3-kb gene cluster involved in EPS biosynthesis. Copyright © 2016. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.