Menu
July 7, 2019  |  

Complete genome sequence of Lactobacillus helveticus MB2-1, a probiotic bacterium producing exopolysaccharides.

Lactobacillus helveticus MB2-1 is a probiotic bacterium producing exopolysaccharides (EPS), which was isolated from traditional Sayram ropy fermented milk in southern Xinjiang, China. The genome consists of a circular 2,084,058bp chromosome with no plasmid. The genome sequence indicated that this strain includes a 15.20kb gene cluster involved in EPS biosynthesis. Genome sequencing information has provided the basis for understanding the potential molecular mechanism behind the EPS production. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Lactobacillus paracasei CAUH35, a new strain isolated from traditional fermented dairy product koumiss in China.

Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Lactobacillus paracasei L9, a new probiotic strain with high lactic acid-producing capacity.

Lactobaillus paracasei L9 (CGMCC No. 9800) is a new strain with probiotic properties originating from healthy human intestine. Previous studies evidenced that the strain regulates immune modulation and contributes to the production of high amounts of lactic acid. The genome of L. paracasei L9 contains a circular 3076,437-bp chromosome, encoding 3044 CDSs, 15 rRNA genes and 59 tRNA genes. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of the probiotic bacterium Bifidobacterium breve KCTC 12201BP isolated from a healthy infant.

We present the completely sequenced genome of Bifidobacterium breve CBT BR3, which was isolated from the feces of a healthy infant. The 2.43-Mb genome contains several kinds of genetic factors associated with health promotion of the human host such as oligosaccharide-degrading genes and vitamin-biosynthetic genes. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health.

Bifidobacteria constitute a major group of beneficial intestinal bacteria, and are therefore often used to formulate probiotic products in combination with lactic acid bacteria. The availability of bifidobacterial genome sequences has broadened our knowledge on health-promoting factors as well as their safety assessments. Here, we present the complete genome sequence of Bifidobacterium longum CBT BG7 that consists of a 2.45-Mb chromosome and a plasmid. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Propionibacterium freudenreichii DSM 20271(T).

Propionibacterium freudenreichii subsp. freudenreichii DSM 20271(T) is the type strain of species Propionibacterium freudenreichii that has a long history of safe use in the production dairy products and B12 vitamin. P. freudenreichii is the type species of the genus Propionibacterium which contains Gram-positive, non-motile and non-sporeforming bacteria with a high G?+?C content. We describe the genome of P. freudenreichii subsp. freudenreichii DSM 20271(T) consisting of a 2,649,166 bp chromosome containing 2320 protein-coding genes and 50 RNA-only encoding genes.


July 7, 2019  |  

Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity

BACKGROUND:So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.RESULTS:Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages.CONCLUSIONS:SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.


July 7, 2019  |  

Development of new methods for the quantitative detection and typing of Lactobacillus parabuchneri in dairy products

Thirty-one isolates of Lactobacillus parabuchneri were obtained from cheese containing histamine; of these, 26 were found to possess the hdcA gene encoding histidine decarboxylase. By analysing the genome data of 13 isolates, specific targets for the development of PCR-based detection and typing systems for L. parabuchneri were identified. The real-time PCR for detection showed a linear quantification over a range of 7 logs and a detection limit of 10 gene equivalents per reaction. The strain typing method utilised the amplification of repeat sequences and showed discrimination comparable with a phylogenetic tree, based on genome comparisons. The method was suitable for detecting and monitoring the development of L. parabuchneri in raw milk and cheese.


July 7, 2019  |  

Complete genome sequence of the dairy isolate Lactobacillus acidipiscis ACA-DC 1533.

Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. Copyright © 2017 Kazou et al.


July 7, 2019  |  

The complete genome sequence of the yogurt isolate Streptococcus thermophilus ACA-DC 2.

Streptococcus thermophilus ACA-DC 2 is a newly sequenced strain isolated from traditional Greek yogurt. Among the 14 fully sequenced strains of S. thermophilus currently deposited in the NCBI database, the ACA-DC 2 strain has the smallest chromosome, containing 1,731,838 bp. The annotation of its genome revealed the presence of 1,850 genes, including 1,556 protein-coding genes, 70 RNA genes and 224 potential pseudogenes. A large number of pseudogenes were identified. This was also accompanied by the absence of pathogenic features suggesting evolution of strain ACA-DC 2 through genome decay processes, most probably due to adaptation to the milk ecosystem. Analysis revealed the existence of one complete lactose-galactose operon, several proteolytic enzymes, one exopolysaccharide cluster, stress response genes and four putative antimicrobial peptides. Interestingly, one CRISPR-cas system and one orphan CRISPR, both carrying only one spacer, were predicted indicating low activity or inactivation of the cas proteins. Nevertheless, four putative restriction-modification systems were determined that may compensate any deficiencies of the CRISPR-cas system. Furthermore, whole genome phylogeny indicated three distinct clades within S. thermophilus. Comparative analysis among selected strains representative for each clade, including strain ACA-DC 2, revealed a high degree of conservation at the genomic scale, but also strain specific regions. Unique genes and genomic islands of strain ACA-DC 2 contained a number of genes potentially acquired through horizontal gene transfer events, that could be related to important technological properties for dairy starters. Our study suggests genomic traits in strain ACA-DC 2 compatible to the production of dairy fermented foods.


July 7, 2019  |  

Complete genome sequence of Lactobacillus fermentum MTCC 25067 (formerly TDS030603), a viscous exopolysaccharide-producing strain isolated from Indian fermented milk.

Lactobacillus fermentum MTCC 25067 (formerly TDS030603) is capable of producing a highly viscous slime exopolysaccharide. We report here the complete genome sequence of the strain, which was deciphered by using PacBio single-molecule real-time sequencing technology. Copyright © 2017 Aryantini et al.


July 7, 2019  |  

Detection and assessment of copy number variation using PacBio long-read and Illumina sequencing in New Zealand dairy cattle.

Single nucleotide polymorphisms have been the DNA variant of choice for genomic prediction, largely because of the ease of single nucleotide polymorphism genotype collection. In contrast, structural variants (SV), which include copy number variants (CNV), translocations, insertions, and inversions, have eluded easy detection and characterization, particularly in nonhuman species. However, evidence increasingly shows that SV not only contribute a substantial proportion of genetic variation but also have significant influence on phenotypes. Here we present the discovery of CNV in a prominent New Zealand dairy bull using long-read PacBio (Pacific Biosciences, Menlo Park, CA) sequencing technology and the Sniffles SV discovery tool (version 0.0.1; https://github.com/fritzsedlazeck/Sniffles). The CNV identified from long reads were compared with CNV discovered in the same bull from Illumina sequencing using CNVnator (read depth-based tool; Illumina Inc., San Diego, CA) as a means of validation. Subsequently, further validation was undertaken using whole-genome Illumina sequencing of 556 cattle representing the wider New Zealand dairy cattle population. Very limited overlap was observed in CNV discovered from the 2 sequencing platforms, in part because of the differences in size of CNV detected. Only a few CNV were therefore able to be validated using this approach. However, the ability to use CNVnator to genotype the 557 cattle for copy number across all regions identified as putative CNV allowed a genome-wide assessment of transmission level of copy number based on pedigree. The more highly transmissible a putative CNV region was observed to be, the more likely the distribution of copy number was multimodal across the 557 sequenced animals. Furthermore, visual assessment of highly transmissible CNV regions provided evidence supporting the presence of CNV across the sequenced animals. This transmission-based approach was able to confirm a subset of CNV that segregates in the New Zealand dairy cattle population. Genome-wide identification and validation of CNV is an important step toward their inclusion in genomic selection strategies.The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.