September 22, 2019  |  

Cow, yak, and camel milk diets differentially modulated the systemic immunity and fecal microbiota of rats

Cow milk is most widely consumed; however, non-cattle milk has gained increasing interest because of added nutritive values. We compared the health effects of yak, cow, and camel milk in rats. By measuring several plasma immune factors, significantly more interferon-? was detected in the camel than the yak (P=0.0020) or cow (P=0.0062) milk group. Significantly more IgM was detected in the yak milk than the control group (P=0.0071). The control group had significantly less interleukin 6 than the yak (P=0.0499) and cow (P=0.0248) milk groups. The fecal microbiota of the 144 samples comprised mainly of the Firmicutes (76.70±11.03%), Bacteroidetes (15.27±7.79%), Proteobacteria (3.61±4.34%), and Tenericutes (2.61±2.53%) phyla. Multivariate analyses revealed a mild shift in the fecal microbiota along the milk treatment. We further identified the differential microbes across the four groups. At day 14, 22 and 28 differential genera and species were identified (P=0.0000–0.0462), while 8 and 11 differential genera and species (P=0.0000–0.0013) were found at day 28. Some short-chain fatty acid and succinate producers increased, while certain health-concerned bacteria (Prevotella copri, Phascolarctobacterium faecium, and Bacteroides uniformis) decreased after 14days of yak or camel milk treatment. We demonstrated that different animal milk could confer distinctive nutritive value to the host.


September 22, 2019  |  

A novel lactobacilli-based teat disinfectant for improving bacterial communities in the milks of cow teats with subclinical mastitis.

Teat disinfection pre- and post-milking is important for the overall health and hygiene of dairy cows. The objective of this study was to evaluate the efficacy of a novel probiotic lactobacilli-based teat disinfectant based on changes in somatic cell count (SCC) and profiling of the bacterial community. A total of 69 raw milk samples were obtained from eleven Holstein-Friesian dairy cows over 12 days of teat dipping in China. Single molecule, real-time sequencing technology (SMRT) was employed to profile changes in the bacterial community during the cleaning protocol and to compare the efficacy of probiotic lactic acid bacteria (LAB) and commercial teat disinfectants. The SCC gradually decreased following the cleaning protocol and the SCC of the LAB group was slightly lower than that of the commercial disinfectant (CD) group. Our SMRT sequencing results indicate that raw milk from both the LAB and CD groups contained diverse microbial populations that changed over the course of the cleaning protocol. The relative abundances of some species were significantly changed during the cleaning process, which may explain the observed bacterial community differences. Collectively, these results suggest that the LAB disinfectant could reduce mastitis-associated bacteria and improve the microbial environment of the cow teat. It could be used as an alternative to chemical pre- and post-milking teat disinfectants to maintain healthy teats and udders. In addition, the Pacific Biosciences SMRT sequencing with the full-length 16S ribosomal RNA gene was shown to be a powerful tool for monitoring changes in the bacterial population during the cleaning protocol.


September 22, 2019  |  

Using PacBio long-read high-throughput microbial gene amplicon sequencing to evaluate infant formula safety.

Infant formula (IF) requires a strict microbiological standard because of the high vulnerability of infants to foodborne diseases. The current study used the PacBio single molecule real-time (SMRT) sequencing platform to generate full-length 16S rRNA-based bacterial microbiota profiles of thirty Chinese domestic and imported IF samples. A total of 600 species were identified, dominated by Streptococcus thermophilus, Lactococcus lactis and Lactococcus piscium. Distinctive bacterial profiles were observed between the two sample groups, as confirmed with both principal coordinate analysis and multivariate analysis of variance. Moreover, the product whey protein nitrogen index (WPNI), representing the degree of preheating, negatively correlated with the relative abundances of the Bacillus genus. Our study has demonstrated the application of the PacBio SMRT sequencing platform in assessing the bacterial contamination of IF products, which is of interest to the dairy industry for effective monitoring of microbial quality and safety during production.


September 22, 2019  |  

The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows

Probiotics administration can improve host health. This study aims to determine the effects of probiotics (Lactobacillus casei Zhang and Lactobacillus plantarum P-8) administration on milk production, milk functional components, milk composition, and fecal microbiota of dairy cows. Variations in the fecal bacteria microbiota between treatments were assessed based on 16S rRNA profiles determined by PacBio single molecule real-time sequencing technology. The probiotics supplementation significantly increased the milk production and the contents of milk immunoglobulin G (IgG), lactoferrin (LTF), lysozyme (LYS) and lactoperoxidase (LP), while the somatic cell counts (SCC) significantly decreased (P < 0.01). However, no significant difference was found in the milk fat, protein and lactose contents (P > 0.05). Although the probiotics supplementation did not change the fecal bacteria richness and diversity, significantly more rumen fermentative bacteria (Bacteroides, Roseburia, Ruminococcus, Clostridium, Coprococcus and Dorea) and beneficial bacteria (Faecalibacterium prausnitzii) were found in the probiotics treatment group. Meanwhile, some opportunistic pathogens e.g. Bacillus cereus, Cronobacter sakazakii and Alkaliphilus oremlandii, were suppressed. Additionally, we found some correlations between the milk production, milk components and fecal bacteria. To sum up, our study demonstrated the beneficial effects of probiotics application in improving the quality and quantity of cow milk production.


September 22, 2019  |  

Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing.

Koumiss is considered as a complete dairy product high in nutrients and with medicinal properties. The bacterial communities involved in production of koumiss play a crucial role in the fermentation cycle. To reveal bacterial biodiversity in koumiss and the dynamics of succession in bacterial populations during fermentation, 22 samples were collected from 5 sampling sites and the full length of the 16S ribosomal RNA genes sequenced using single molecule real-time sequencing technology. One hundred forty-eight species were identified from 82 bacterial genera and 8 phyla. These results suggested that the structural difference in the bacterial community could be attributed to geographical location. The most significant difference in bacterial composition occurred in samples from group D compared with other groups. The sampling location of group D was distant from the city and maintained the primitive local nomadic life. The dynamics of succession in bacterial communities showed that Lactobacillus helveticus increased in abundance from 0 to 9h and reached its peak at 9h and then decreased. In contrast, Enterococcus faecalis, Enterococcus durans, and Enterococcus casseliflavus increased gradually throughout the fermentation process, and reached a maximum after 24h. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Evaluation of bacterial contamination in raw milk, ultra-high temperature milk and infant formula using single molecule, real-time sequencing technology.

The Pacific Biosciences (Menlo Park, CA) single molecule, real-time sequencing technology (SMRT) was reported to have some advantages in analyzing the bacterial profile of environmental samples. In this study, the presence of bacterial contaminants in raw milk, UHT milk, and infant formula was determined by SMRT sequencing of the full length 16S rRNA gene. The bacterial profiles obtained at different taxonomic levels revealed clear differences in bacterial community structure across the 16 analyzed dairy samples. No indicative pathogenic bacteria were found in any of these tested samples. However, some of the detected bacterial species (e.g., Bacillus cereus, Enterococcus casseliflavus, and Enterococcus gallinarum) might potentially relate with product quality defects and bacterial antibiotic gene transfer. Although only a limited number of dairy samples were analyzed here, our data have demonstrated for the first time the feasibility of using the SMRT sequencing platform in detecting bacterial contamination. Our paper also provides interesting reference information for future development of new precautionary strategies for controlling the dairy safety in large-scale industrialized production lines. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Analysis of the gut microbial diversity of dairy cows during peak lactation by PacBio Single-Molecule Real-Time (SMRT) Sequencing.

The gut microbes of dairy cows are strongly associated with their health, but the relationship between milk production and the intestinal microbiota has seldom been studied. Thus, we explored the diversity of the intestinal microbiota during peak lactation of dairy cows.The intestinal microbiota of nine dairy cows at peak lactation was evaluated using the Pacific Biosciences single-molecule real-time (PacBio SMRT) sequencing approach.A total of 32,670 high-quality 16S rRNA gene sequences were obtained, belonging to 12 phyla, 59 families, 107 genera, and 162 species. Firmicutes (83%) were the dominant phylum, while Bacteroides (6.16%) was the dominant genus. All samples showed a high microbial diversity, with numerous genera of short chain fatty acid (SCFA)-producers. The proportion of SCFA producers was relatively high in relation to the identified core intestinal microbiota. Moreover, the predicted functional metagenome was heavily involved in energy metabolism.This study provided novel insights into the link between the dairy cow gut microbiota and milk production.


September 22, 2019  |  

Diverse antibiotic resistance genes in dairy cow manure.

Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.


September 22, 2019  |  

Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses

In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy.


September 22, 2019  |  

Comparative genomics of completely sequenced Lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level.

Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences’ long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus-to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus. Notably, the functional Clusters of Orthologous Groups of proteins categories “cell wall/membrane biogenesis” and “defense mechanisms” were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be very useful for the analysis of natural whey starter cultures with metagenomics, as a larger percentage of the sequenced reads of these complex mixtures could be unambiguously assigned down to the strain level.


July 19, 2019  |  

Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and associated methylome analysis.

Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome sequence of B. animalis subsp. lactis CNCM I-2494 is predicted to harbour the genetic determinants for two type II R-M systems, designated BanLI and BanLII. In order to investigate the functionality and specificity of these two putative R-M systems in B. animalis subsp. lactis CNCM I-2494, we employed PacBio SMRT sequencing with associated methylome analysis. In addition, the contribution of the identified R-M systems to the genetic accessibility of this strain was assessed.


July 19, 2019  |  

Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production.In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon.Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.


July 7, 2019  |  

Short communication: Single molecule, real-time sequencing technology revealed species- and strain-specific methylation patterns of 2 Lactobacillus strains.

Pacific Biosciences’ (Menlo Park, CA) single molecule, real-time sequencing technology was reported to have some advantages in generating finished genomes and characterizing the epigenome of bacteria. In the present study, this technology was used to sequence 2 Lactobacillus strains, Lactobacillus casei Zhang and Lactobacillus plantarum P-8. Previously, the former bacterium was sequenced by an Applied Biosystems 3730 DNA analyzer (Grand Island, NY), whereas the latter one was analyzed with Roche 454 (Indianapolis, IN) and Illumina sequencing technologies (San Diego, CA). The results showed that single molecule, real-time sequencing resulted in high-quality, finished genomes for both strains. Interestingly, epigenome analysis indicates the presence of 1 active N(6)-methyladenine methyltransferase in L. casei Zhang, but none in L. plantarum P-8. Our study revealed for the first time a completely different methylation pattern in 2 Lactobacillus strains. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Bifidobacterium animalis subsp. lactis A6, a probiotic strain with high acid resistance ability.

Bifidobacterium animalis subsp. lactis A6 (BAA6) (CGMCC No. 9273) was a probiotic strain isolated from the feces of a centenarian. Previous study showed that BAA6 had high acid resistance to low pH which is a critical factor influencing its healthy benefits. Elaborating the stress resistant mechanisms of bifidobacteria is important to extensively exploit this probiotic. Here, we reported the complete genome sequence of BAA6 that contains 1,958,651 bp encoding 1622 CDSs, 16 rRNA genes, 52 tRNA genes. Copyright © 2015 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.