Menu
July 7, 2019  |  

The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties.

The potato late blight resistance gene R8 has been cloned. R8 is found in five late blight resistant varieties deployed in three different continents. R8 recognises Avr8 and is homologous to the NB-LRR protein Sw-5 from tomato. The broad spectrum late blight resistance gene R8 from Solanum demissum was cloned based on a previously published coarse map position on the lower arm of chromosome IX. Fine mapping in a recombinant population and bacterial artificial chromosome (BAC) library screening resulted in a BAC contig spanning 170 kb of the R8 haplotype. Sequencing revealed a cluster of at least ten R gene analogues (RGAs). The seven RGAs in the genetic window were subcloned for complementation analysis. Only one RGA provided late blight resistance and caused recognition of Avr8. From these results, it was concluded that the newly cloned resistance gene was indeed R8. R8 encodes a typical intracellular immune receptor with an N-terminal coiled coil, a central nucleotide binding site and 13 C-terminal leucine rich repeats. Phylogenetic analysis of a set of representative Solanaceae R proteins shows that R8 resides in a clearly distinct clade together with the Sw-5 tospovirus R protein from tomato. It was found that the R8 gene is present in late blight resistant potato varieties from Europe (Sarpo Mira), USA (Jacqueline Lee, Missaukee) and China (PB-06, S-60). Indeed, when tested under field conditions, R8 transgenic potato plants showed broad spectrum resistance to the current late blight population in the Netherlands, similar to Sarpo Mira.


July 7, 2019  |  

The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads.

Sugarcane accounts for a large portion of the worlds sugar production. Modern commercial cultivars are complex hybrids of S. officinarum and several other Saccharum species. Historical records identify New Guinea as the origin of S. officinarum and that a small number of plants originating from there were used to generate all modern commercial cultivars. The mitochondrial genome can be a useful way to identify the maternal origin of commercial cultivars. We have used the PacBio RSII to sequence and assemble the mitochondrial genome of a South East Asian commercial cultivar, known as Khon Kaen 3. The long read length of this sequencing technology allowed for the mitochondrial genome to be assembled into two distinct circular chromosomes with all repeat sequences spanned by individual reads. Comparison of five commercial hybrids, two S. officinarum and one S. spontaneum to our assembly reveals no structural rearrangements between our assembly, the commercial hybrids and an S. officinarum from New Guinea. The S. spontaneum, from India, and one sample of S. officinarum (unknown origin) are substantially rearranged and have a large number of homozygous variants. This supports the record that S. officinarum plants from New Guinea are the maternal source of all modern commercial hybrids.


July 7, 2019  |  

Improved hybrid de novo genome assembly of domesticated apple (Malus x domestica).

Domesticated apple (Malus?×?domestica Borkh) is a popular temperate fruit with high nutrient levels and diverse flavors. In 2012, global apple production accounted for at least one tenth of all harvested fruits. A high-quality apple genome assembly is crucial for the selection and breeding of new cultivars. Currently, a single reference genome is available for apple, assembled from 16.9?×?genome coverage short reads via Sanger and 454 sequencing technologies. Although a useful resource, this assembly covers only ~89 % of the non-repetitive portion of the genome, and has a relatively short (16.7 kb) contig N50 length. These downsides make it difficult to apply this reference in transcriptive or whole-genome re-sequencing analyses.Here we present an improved hybrid de novo genomic assembly of apple (Golden Delicious), which was obtained from 76 Gb (~102?×?genome coverage) Illumina HiSeq data and 21.7 Gb (~29?×?genome coverage) PacBio data. The final draft genome is approximately 632.4 Mb, representing?~?90 % of the estimated genome. The contig N50 size is 111,619 bp, representing a 7 fold improvement. Further annotation analyses predicted 53,922 protein-coding genes and 2,765 non-coding RNA genes.The new apple genome assembly will serve as a valuable resource for investigating complex apple traits at the genomic level. It is not only suitable for genome editing and gene cloning, but also for RNA-seq and whole-genome re-sequencing studies.


July 7, 2019  |  

An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly.

High density genetic linkage maps that are extensively anchored to assembled genome sequences of the organism in question are extremely useful in gene discovery. To facilitate this process in perennial ryegrass (Lolium perenne L.), a high density single nucleotide polymorphism (SNP)- and presence/absence variant (PAV)-based genetic linkage map has been developed in an F2 mapping population that has been used as a reference population in numerous studies. To provide a reference sequence to which to align genotyping by sequencing (GBS) reads, a shotgun assembly of one of the grandparents of the population, a tenth-generation inbred line, was created using Illumina-based sequencing.The assembly was based on paired-end Illumina reads, scaffolded by mate pair and long jumping distance reads in the range of 3-40?kb, with >200-fold initial genome coverage. A total of 169 individuals from an F2 mapping population were used to construct PstI-based GBS libraries tagged with unique 4-9 nucleotide barcodes, resulting in 284 million reads, with approx. 1·6 million reads per individual. A bioinformatics pipeline was employed to identify both SNPs and PAVs. A core genetic map was generated using high confidence SNPs, to which lower confidence SNPs and PAVs were subsequently fitted in a straightforward binning approach.The assembly comprises 424?750 scaffolds, covering 1·11 Gbp of the 2·5 Gbp perennial ryegrass genome, with a scaffold N50 of 25 212?bp and a contig N50 of 3790?bp. It is available for download, and access to a genome browser has been provided. Comparison of the assembly with available transcript and gene model data sets for perennial ryegrass indicates that approx. 570 Mbp of the gene-rich portion of the genome has been captured. An ultra-high density genetic linkage map with 3092 SNPs and 7260 PAVs was developed, anchoring just over 200?Mb of the reference assembly.The combined genetic map and assembly, combined with another recently released genome assembly, represent a significant resource for the perennial ryegrass genetics community.© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.


July 7, 2019  |  

The evolution of orphan regions in genomes of a fungal pathogen of wheat.

Fungal plant pathogens rapidly evolve virulence on resistant hosts through mutations in genes encoding proteins that modulate the host immune responses. The mutational spectrum likely includes chromosomal rearrangements responsible for gains or losses of entire genes. However, the mechanisms creating adaptive structural variation in fungal pathogen populations are poorly understood. We used complete genome assemblies to quantify structural variants segregating in the highly polymorphic fungal wheat pathogen Zymoseptoria tritici The genetic basis of virulence in Z. tritici is complex, and populations harbor significant genetic variation for virulence; hence, we aimed to identify whether structural variation led to functional differences. We combined single-molecule real-time sequencing, genetic maps, and transcriptomics data to generate a fully assembled and annotated genome of the highly virulent field isolate 3D7. Comparative genomics analyses against the complete reference genome IPO323 identified large chromosomal inversions and the complete gain or loss of transposable-element clusters, explaining the extensive chromosomal-length polymorphisms found in this species. Both the 3D7 and IPO323 genomes harbored long tracts of sequences exclusive to one of the two genomes. These orphan regions contained 296 genes unique to the 3D7 genome and not previously known for this species. These orphan genes tended to be organized in clusters and showed evidence of mutational decay. Moreover, the orphan genes were enriched in genes encoding putative effectors and included a gene that is one of the most upregulated putative effector genes during wheat infection. Our study showed that this pathogen species harbored extensive chromosomal structure polymorphism that may drive the evolution of virulence.Pathogen outbreak populations often harbor previously unknown genes conferring virulence. Hence, a key puzzle of rapid pathogen evolution is the origin of such evolutionary novelty in genomes. Chromosomal rearrangements and structural variation in pathogen populations likely play a key role. However, identifying such polymorphism is challenging, as most genome-sequencing approaches only yield information about point mutations. We combined long-read technology and genetic maps to assemble the complete genome of a strain of a highly polymorphic fungal pathogen of wheat. Comparisons against the reference genome of the species showed substantial variation in the chromosome structure and revealed large regions unique to each assembled genome. These regions were enriched in genes encoding likely effector proteins, which are important components of pathogenicity. Our study showed that pathogen populations harbor extensive polymorphism at the chromosome level and that this polymorphism can be a source of adaptive genetic variation in pathogen evolution. Copyright © 2016 Plissonneau et al.


July 7, 2019  |  

Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities.

The Serratia plymuthica strains 3Rp8 and 3Re4-18 are motile, Gram-negative, non-sporulating bacteria. Strain 3Rp8 was isolated from the rhizosphere of Brassica napus L. and strain 3Re4-18 from the endorhiza of Solanum tuberosum L. Studies have shown in vitro activity against the soil-borne fungi Verticillium dahliae Kleb., Rhizoctonia solani Kühn, and Sclerotinia sclerotiorum. Here, we announce and describe the complete genome sequence of S. plymuthica 3Rp8 consisting of a single circular chromosome of 5.5 Mb that encodes 4954 protein-coding and 108 RNA-only encoding genes and of S. plymuthica 3Re4-18 consisting of a single circular chromosome of 5.4 Mb that encodes 4845 protein-coding and 109 RNA-only encoding genes. The whole genome sequences and annotations are available in NCBI under the locus numbers CP012096 and CP012097, respectively. The genome analyses revealed genes putatively responsible for the promising plant growth promoting and biocontrol properties including predicting factors such as secretion systems, iron scavenging siderophores, chitinases, secreted proteases, glucanases and non-ribosomal peptide synthetases, as well as unique genomic islands.


July 7, 2019  |  

The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae).

The amaranth genus contains many important grain and weedy species. We further our understanding of the genus through the development of a complete reference chloroplast genome.A high-quality Amaranthus hypochondriacus (Amaranthaceae) chloroplast genome assembly was developed using long-read technology. This reference genome was used to reconstruct the chloroplast genomes for two closely related grain species (A. cruentus and A. caudatus) and their putative progenitor (A. hybridus). The reference genome was 150,518 bp and possesses a circular structure of two inverted repeats (24,352 bp) separated by small (17,941 bp) and large (83,873 bp) single-copy regions; it encodes 111 genes, 72 for proteins. Relative to the reference chloroplast genome, an average of 210 single-nucleotide polymorphisms (SNPs) and 122 insertion/deletion polymorphisms (indels) were identified across the analyzed genomes.This reference chloroplast genome, along with the reported simple sequence repeats, SNPs, and indels, is an invaluable genetic resource for studying the phylogeny and genetic diversity within the amaranth genus.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.