Menu
July 7, 2019  |  

Detection and assessment of copy number variation using PacBio long-read and Illumina sequencing in New Zealand dairy cattle.

Single nucleotide polymorphisms have been the DNA variant of choice for genomic prediction, largely because of the ease of single nucleotide polymorphism genotype collection. In contrast, structural variants (SV), which include copy number variants (CNV), translocations, insertions, and inversions, have eluded easy detection and characterization, particularly in nonhuman species. However, evidence increasingly shows that SV not only contribute a substantial proportion of genetic variation but also have significant influence on phenotypes. Here we present the discovery of CNV in a prominent New Zealand dairy bull using long-read PacBio (Pacific Biosciences, Menlo Park, CA) sequencing technology and the Sniffles SV discovery tool (version 0.0.1; https://github.com/fritzsedlazeck/Sniffles). The CNV identified from long reads were compared with CNV discovered in the same bull from Illumina sequencing using CNVnator (read depth-based tool; Illumina Inc., San Diego, CA) as a means of validation. Subsequently, further validation was undertaken using whole-genome Illumina sequencing of 556 cattle representing the wider New Zealand dairy cattle population. Very limited overlap was observed in CNV discovered from the 2 sequencing platforms, in part because of the differences in size of CNV detected. Only a few CNV were therefore able to be validated using this approach. However, the ability to use CNVnator to genotype the 557 cattle for copy number across all regions identified as putative CNV allowed a genome-wide assessment of transmission level of copy number based on pedigree. The more highly transmissible a putative CNV region was observed to be, the more likely the distribution of copy number was multimodal across the 557 sequenced animals. Furthermore, visual assessment of highly transmissible CNV regions provided evidence supporting the presence of CNV across the sequenced animals. This transmission-based approach was able to confirm a subset of CNV that segregates in the New Zealand dairy cattle population. Genome-wide identification and validation of CNV is an important step toward their inclusion in genomic selection strategies.The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).


July 7, 2019  |  

XCAVATOR: accurate detection and genotyping of copy number variants from second and third generation whole-genome sequencing experiments.

We developed a novel software package, XCAVATOR, for the identification of genomic regions involved in copy number variants/alterations (CNVs/CNAs) from short and long reads whole-genome sequencing experiments.By using simulated and real datasets we showed that our tool, based on read count approach, is capable to predict the boundaries and the absolute number of DNA copies CNVs/CNAs with high resolutions. To demonstrate the power of our software we applied it to the analysis Illumina and Pacific Bioscencies data and we compared its performance to other ten state of the art tools.All the analyses we performed demonstrate that XCAVATOR is capable to detect germline and somatic CNVs/CNAs outperforming all the other tools we compared. XCAVATOR is freely available at http://sourceforge.net/projects/xcavator/ .


July 7, 2019  |  

Structural variation offers new home for disease associations and gene discovery

Following completion of the Human Genome Project, most studies of human genetic variation have centered on single nucleotide polymorphisms (SNPs). SNPs are numerous in individual genomes and serve as useful genetic markers in association studies across a population. These markers have been leveraged to identify genetic loci for disease risk and draw associations with numerous traits of interest. Despite their usefulness, SNPs do not tell the whole story. For example, most SNPs are associated with only a small increased risk of disease, and they usually cannot identify on their own which genes are causal. This has resulted in what many researchers have referred to as missing or hidden heritability.


July 7, 2019  |  

Hunting structural variants: Population by population

Until recently, most population-scale genome sequencing studies have focused on identifying single nucleotide variants (SNVs) to explore genetic differences between individuals. Like so many SNV-based genome-wide association studies, however, these efforts have had difficulty identifying causative genetic mechanisms underlying most complex functions. More and more, the genomics community has realised that structural variation is likely responsible for many of the traits and phenotypes that scientists have not been able to attribute to SNVs. This class of variants, defined as genetic differences of 50 bp or larger, accounts for most of the DNA sequence differences between any two people. Structural variants (SVs) are also already known to cause many common and rare diseases including ALS, schizophrenia, leukemia, Carney complex, and Huntington’s disease. Despite the importance of SVs, these larger variants have been understudied and underreported compared to their single-nucleotide counterparts. One reason is that they remain difficult to detect. Their length often means they cannot be fully spanned using short sequencing reads. They also often occur in highly repetitive or GC-rich regions of the genome, making them challenging targets. As such, this class of human genetic variation has remained vastly under-explored in global populations and is now ripe for discovery.


July 7, 2019  |  

Copy number variation probes inform diverse applications

A major contributor to inter-individual genomic variability is copy number variation (CNV). CNVs change the diploid status of the DNA, involve one or multiple genes, and may disrupt coding regions, affect regulatory elements, or change gene dosage. While some of these changes may have no phenotypic consequences, others underlie disease, explain evolutionary processes, or impact the response to medication.


July 7, 2019  |  

Hidden genetic variation shapes the structure of functional elements in Drosophila.

Mutations that add, subtract, rearrange, or otherwise refashion genome structure often affect phenotypes, although the fragmented nature of most contemporary assemblies obscures them. To discover such mutations, we assembled the first new reference-quality genome of Drosophila melanogaster since its initial sequencing. By comparing this new genome to the existing D. melanogaster assembly, we created a structural variant map of unprecedented resolution and identified extensive genetic variation that has remained hidden until now. Many of these variants constitute candidates underlying phenotypic variation, including tandem duplications and a transposable element insertion that amplifies the expression of detoxification-related genes associated with nicotine resistance. The abundance of important genetic variation that still evades discovery highlights how crucial high-quality reference genomes are to deciphering phenotypes.


July 7, 2019  |  

Copy number variation and expression analysis reveals a nonorthologous pinta gene family member involved in butterfly vision.

Vertebrate (cellular retinaldehyde-binding protein) and Drosophila (prolonged depolarization afterpotential is not apparent [PINTA]) proteins with a CRAL-TRIO domain transport retinal-based chromophores that bind to opsin proteins and are necessary for phototransduction. The CRAL-TRIO domain gene family is composed of genes that encode proteins with a common N-terminal structural domain. Although there is an expansion of this gene family in Lepidoptera, there is no lepidopteran ortholog of pinta. Further, the function of these genes in lepidopterans has not yet been established. Here, we explored the molecular evolution and expression of CRAL-TRIO domain genes in the butterfly Heliconius melpomene in order to identify a member of this gene family as a candidate chromophore transporter. We generated and searched a four tissue transcriptome and searched a reference genome for CRAL-TRIO domain genes. We expanded an insect CRAL-TRIO domain gene phylogeny to include H. melpomene and used 18 genomes from 4 subspecies to assess copy number variation. A transcriptome-wide differential expression analysis comparing four tissue types identified a CRAL-TRIO domain gene, Hme CTD31, upregulated in heads suggesting a potential role in vision for this CRAL-TRIO domain gene. RT-PCR and immunohistochemistry confirmed that Hme CTD31 and its protein product are expressed in the retina, specifically in primary and secondary pigment cells and in tracheal cells. Sequencing of eye protein extracts that fluoresce in the ultraviolet identified Hme CTD31 as a possible chromophore binding protein. Although we found several recent duplications and numerous copy number variants in CRAL-TRIO domain genes, we identified a single copy pinta paralog that likely binds the chromophore in butterflies.© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Species- and strain-specific adaptation of the HSP70 super family in pathogenic trypanosomatids.

All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment-genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.