Menu
July 19, 2019  |  

An incomplete understanding of human genetic variation.

Deciphering the genetic basis of human disease requires a comprehensive knowledge of genetic variants irrespective of their class or frequency. Although an impressive number of human genetic variants have been catalogued, a large fraction of the genetic difference that distinguishes two human genomes is still not understood at the base-pair level. This is because the emphasis has been on single-nucleotide variation as opposed to less tractable and more complex genetic variants, including indels and structural variants. The latter, we propose, will have a large impact on human phenotypes but require a more systematic assessment of genomes at deeper coverage and alternate sequencing and mapping technologies. Copyright © 2016 by the Genetics Society of America.


July 19, 2019  |  

Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads.

Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.


July 19, 2019  |  

Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms.

Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ~3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.


July 19, 2019  |  

Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.

Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage-a pattern unlikely to have arisen so rapidly in the absence of selection (P?


July 19, 2019  |  

A distinct class of chromoanagenesis events characterized by focal copy number gains.

Chromoanagenesis is the process by which a single catastrophic event creates complex rearrangements confined to a single or a few chromosomes. It is usually characterized by the presence of multiple deletions and/or duplications, as well as by copy neutral rearrangements. In contrast, an array CGH screen of patients with developmental anomalies revealed three patients in which a single chromosome carries from 8 to 11 large copy number gains confined to a single chromosome or chromosomal arm, but the absence of deletions. Subsequent fluorescence in situ hybiridization and massive parallel sequencing revealed the duplicons to be clustered together in distinct locations across the altered chromosomes. Breakpoint junction sequences showed both microhomology and non-templated insertions of up to 40 bp. Hence, these patients each demonstrate a single altered chromosome of clustered insertional duplications, no deletions, and breakpoint junction sequences showing microhomology and/or non-templated insertions. These observations are difficult to reconcile with current mechanistic descriptions of chromothripsis and chromoanasynthesis. Therefore, we hypothesize those rearrangements to be of a mechanistically different origin. In addition, we suggest that large untemplated insertional sequences observed at breakpoints are driven by a non-canonical non-homologous end joining mechanism.© 2016 WILEY PERIODICALS, INC.


July 19, 2019  |  

Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila.

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 19, 2019  |  

SplitThreader: Exploration and analysis of rearrangements in cancer genomes

Genomic rearrangements and associated copy number changes are important drivers in cancer as they can alter the expression of oncogenes and tumor suppressors, create gene fusions, and misregulate gene expression. Here we present SplitThreader (http://splitthreader.com), an open- source interactive web application for analysis and visualization of genomic rearrangements and copy number variation in cancer genomes. SplitThreader constructs a sequence graph of genomic rearrangements in the sample and uses a priority queue breadth-first search algorithm on the graph to search for novel interactions. This is applied to detect gene fusions and other novel sequences, as well as to evaluate distances in the rearranged genome between any genomic regions of interest, especially the repositioning of regulatory elements and their target genes. SplitThreader also analyzes each variant to categorize it by its relation to other variants and by its copy number concordance. This identifies balanced translocations, identifies simple and complex variants, and suggests likely false positives when copy number is not concordant across a candidate breakpoint. It also provides explanations when multiple variants affect the copy number state and obscure the contribution of a single variant, such as a deletion within a region that is overall amplified. Together, these categories triage the variants into groups and provide a starting point for further systematic analysis and manual curation. To demonstrate its utility, we apply SplitThreader to three cancer cell lines, MCF-7 and A549 with Illumina paired- end sequencing, and SK-BR-3, with long-read PacBio sequencing. Using SplitThreader, we examine the genomic rearrangements responsible for previously observed gene fusions in SK-BR-3 and MCF-7, and discover many of the fusions involved a complex series of multiple genomic rearrangements. We also find notable differences in the types of variants between the three cell lines, in particular a much higher proportion of reciprocal variants in SK-BR-3 and a distinct clustering of interchromosomal variants in SK-BR-3 and MCF-7 that is absent in A549.


July 19, 2019  |  

Characterization of a human-specific tandem repeat associated with bipolar disorder and schizophrenia.

Bipolar disorder (BD) and schizophrenia (SCZ) are highly heritable diseases that affect more than 3% of individuals worldwide. Genome-wide association studies have strongly and repeatedly linked risk for both of these neuropsychiatric diseases to a 100 kb interval in the third intron of the human calcium channel gene CACNA1C. However, the causative mutation is not yet known. We have identified a human-specific tandem repeat in this region that is composed of 30 bp units, often repeated hundreds of times. This large tandem repeat is unstable using standard polymerase chain reaction and bacterial cloning techniques, which may have resulted in its incorrect size in the human reference genome. The large 30-mer repeat region is polymorphic in both size and sequence in human populations. Particular sequence variants of the 30-mer are associated with risk status at several flanking single-nucleotide polymorphisms in the third intron of CACNA1C that have previously been linked to BD and SCZ. The tandem repeat arrays function as enhancers that increase reporter gene expression in a human neural progenitor cell line. Different human arrays vary in the magnitude of enhancer activity, and the 30-mer arrays associated with increased psychiatric disease risk status have decreased enhancer activity. Changes in the structure and sequence of these arrays likely contribute to changes in CACNA1C function during human evolution and may modulate neuropsychiatric disease risk in modern human populations. Copyright © 2018. Published by Elsevier Inc.


July 7, 2019  |  

Bovine NK-lysin: Copy number variation and functional diversification.

NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ~30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.


July 7, 2019  |  

Single molecule sequencing of THCA synthase reveals copy number variation in modern drug-type Cannabis sativa L.

Cannabinoid expression is an important genetically determined feature of cannabis that presents clinical and legal implications for patients seeking cannabinoid specific therapies like Cannabidiol (CBD). Cannabinoid, terpenoid, and flavonoid marker assisted selection can accelerate breeding efforts by offering genetic tools to select for desired traits at an early stage in growth. To this end, multiple models for chemotype inheritance have been described suggesting a complex picture for chemical phenotype determination. Here we explore the potential role of copy number variation of THCA Synthase using phased single molecule sequencing and demonstrate that copy number and sequence variation of this gene is common and suggests a more nuanced view of chemotype prediction.


July 7, 2019  |  

The challenges and importance of structural variation detection in livestock.

Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.


July 7, 2019  |  

The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.

The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption–both intentionally and through widespread cross-contamination–and for the past 60?years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500?kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.


July 7, 2019  |  

Evolution and diversity of copy number variation in the great ape lineage.

Copy number variation (CNV) contributes to disease and has restructured the genomes of great apes. The diversity and rate of this process, however, have not been extensively explored among great ape lineages. We analyzed 97 deeply sequenced great ape and human genomes and estimate 16% (469 Mb) of the hominid genome has been affected by recent CNV. We identify a comprehensive set of fixed gene deletions (n = 340) and duplications (n = 405) as well as >13.5 Mb of sequence that has been specifically lost on the human lineage. We compared the diversity and rates of copy number and single nucleotide variation across the hominid phylogeny. We find that CNV diversity partially correlates with single nucleotide diversity (r(2) = 0.5) and recapitulates the phylogeny of apes with few exceptions. Duplications significantly outpace deletions (2.8-fold). The load of segregating duplications remains significantly higher in bonobos, Western chimpanzees, and Sumatran orangutans-populations that have experienced recent genetic bottlenecks (P = 0.0014, 0.02, and 0.0088, respectively). The rate of fixed deletion has been more clocklike with the exception of the chimpanzee lineage, where we observe a twofold increase in the chimpanzee-bonobo ancestor (P = 4.79 × 10(-9)) and increased deletion load among Western chimpanzees (P = 0.002). The latter includes the first genomic disorder in a chimpanzee with features resembling Smith-Magenis syndrome mediated by a chimpanzee-specific increase in segmental duplication complexity. We hypothesize that demographic effects, such as bottlenecks, have contributed to larger and more gene-rich segments being deleted in the chimpanzee lineage and that this effect, more generally, may account for episodic bursts in CNV during hominid evolution.


July 7, 2019  |  

Structure and evolution of the filaggrin gene repeated region in primates

The evolutionary dynamics of repeat sequences is quite complex, with some duplicates never having differentiated from each other. Two models can explain the complex evolutionary process for repeated genes—concerted and birth-and-death, of which the latter is driven by duplications maintained by selection. Copy number variations caused by random duplications and losses in repeat regions may modulate molecular pathways and therefore affect phenotypic characteristics in a population, resulting in individuals that are able to adapt to new environments. In this study, we investigated the filaggrin gene (FLG), which codes for filaggrin—an important component of the outer layers of mammalian skin—and contains tandem repeats that exhibit copy number variation between and within species. To examine which model best fits the evolutionary pathway for the complete tandem repeats within a single exon of FLG, we determined the repeat sequences in crab-eating macaque (Macaca fascicularis), orangutan (Pongo abelii), gorilla (Gorilla gorilla), and chimpanzee (Pan troglodytes) and compared these with the sequence in human (Homo sapiens).


July 7, 2019  |  

Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage-sensitive genes with clinical severity in genomic disorders.

Genomic disorders are the clinical conditions manifested by submicroscopic genomic rearrangements including copy number variants (CNVs). The CNVs can be identified by array-based comparative genomic hybridization (aCGH), the most commonly used technology for molecular diagnostics of genomic disorders. However, clinical aCGH only informs CNVs in the probe-interrogated regions. Neither orientational information nor the resulting genomic rearrangement structure is provided, which is a key to uncovering mutational and pathogenic mechanisms underlying genomic disorders. Long-range polymerase chain reaction (PCR) is a traditional approach to obtain CNV breakpoint junction, but this method is inefficient when challenged by structural complexity such as often found at the PLP1 locus in association with Pelizaeus-Merzbacher disease (PMD). Here we introduced ‘capture and single-molecule real-time sequencing’ (cap-SMRT-seq) and newly developed ‘asymmetry linker-mediated nested PCR walking’ (ALN-walking) for CNV breakpoint sequencing in 49 subjects with PMD-associated CNVs. Remarkably, 29 (94%) of the 31 CNV breakpoint junctions unobtainable by conventional long-range PCR were resolved by cap-SMRT-seq and ALN-walking. Notably, unexpected CNV complexities, including inter-chromosomal rearrangements that cannot be resolved by aCGH, were revealed by efficient breakpoint sequencing. These sequence-based structures of PMD-associated CNVs further support the role of DNA replicative mechanisms in CNV mutagenesis, and facilitate genotype-phenotype correlation studies. Intriguingly, the lengths of gained segments by CNVs are strongly correlated with clinical severity in PMD, potentially reflecting the functional contribution of other dosage-sensitive genes besides PLP1. Our study provides new efficient experimental approaches (especially ALN-walking) for CNV breakpoint sequencing and highlights their importance in uncovering CNV mutagenesis and pathogenesis in genomic disorders.© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.