X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Vertical transmission of highly similar bla CTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid.

The purpose of this study was to characterize sets of extended-spectrum ß-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter.Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis.Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder…

Read More »

Sunday, July 7, 2019

Molecular characterization of plasmid pMoma1of Moraxella macacae, a newly described bacterial pathogen of macaques.

We report the complete nucleotide sequence and characterization of a small cryptic plasmid of Moraxella macacae 0408225, a newly described bacterial species within the family Moraxellaceae and a causative agent of epistaxis in macaques. The complete nucleotide sequence of the plasmid pMoma1 was determined and found to be 5,375 bp in size with a GC content of 37.4 %. Computer analysis of the sequence data revealed five open reading frames encoding putative proteins of 54.4 kDa (ORF1), 17.6 kDa (ORF2), 13.3 kDa (ORF3), 51.6 kDa (ORF4), and 25.0 kDa (ORF5). ORF1, ORF2, and ORF3 encode putative proteins with high identity…

Read More »

Sunday, July 7, 2019

Complete genome sequence of the Clostridium difficile laboratory strain 630¿ erm reveals differences from strain 630, including translocation of the mobile element CTn 5.

Background Clostridium difficile strain 630¿erm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns.ResultsIn addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than…

Read More »

Sunday, July 7, 2019

Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916.

Bacillus subtilis strains BS49 and BS34A, both derived from a common ancestor, carry one or more copies of Tn916, an extremely common mobile genetic element capable of transfer to and from a broad range of microorganisms. Here, we report the complete genome sequence of BS49 and the draft genome sequence of BS34A, which have repeatedly been used as donors to transfer Tn916, Tn916 derivatives or oriTTn916-containing plasmids to clinically important pathogens. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Read More »

Sunday, July 7, 2019

Clonal dissemination of Enterobacter cloacae harboring blaKPC-3 in the upper midwestern United States.

Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583-1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening…

Read More »

Sunday, July 7, 2019

IncI1 plasmids encoding various blaCTX-Ms contributed to ceftriaxone resistance in Salmonella Enteritidis in China.

Resistance to extended spectrum ß-lactams in Salmonella, in particular serotypes such as S. Enteritidis that are frequently associated with clinical infections, is a serious public health concern. In this study, phenotypic characterization of 433 clinical S. Enteritidis strains obtained from a nationwide collection of China CDC during the period of 2005~2010 depicted an increasing trend of resistance to ceftriaxone from 2008 onwards. Seventeen (4%) of the strains were found to be resistant to ceftriaxone, 7% to ciprofloxacin and 0.7% to both ciprofloxacin and ceftriaxone. Most of the ceftriaxone-resistant S. Enteritidis strains (15/17) were genetically unrelated, and originated from Henan province.…

Read More »

Sunday, July 7, 2019

Complete sequence of conjugative IncA/C plasmid encoding CMY-2 ß-lactamase and RmtE 16S rRNA methyltransferase.

RmtE is a rare 16S-RMTase which was first reported in an aminoglycoside-resistant Escherichia coli strain of calf origin (1). Subsequently, we reported the first human case of infection caused by RmtE-producing E. coli (2). The rmtE gene is carried on a self-conjugative plasmid (pYDC637) in the latter strain. The present work aimed to elucidate the genetic context of rmtE. The sequencing approach has been described previously (3). In brief, the plasmid was extracted from an E. coli TOP10 transformant carrying pYDC637 and sequenced on a PacBio RS II sequencing instrument (Pacific Biosciences, Menlo Park, CA). Assembly was also conducted using…

Read More »

Sunday, July 7, 2019

vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus.

Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and…

Read More »

Sunday, July 7, 2019

Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors.

The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known. In this study, genome sequences of representatives of the two symbiovars were produced, providing new material for studying properties of N. galegae, with a special interest in genomic differences that may play a role in host specificity.The genome sequences confirmed that the two representative strains are much alike at a whole-genome level. Analysis…

Read More »

Sunday, July 7, 2019

Complete sequence of a conjugative IncN plasmid harboring blakpc-2, blashv-12, and qnrS1 from an Escherichia coli sequence type 648 strain

We sequenced a novel conjugative blaKPC-2-harboring IncN plasmid, pYD626E, from an Escherichia coli sequence type 648 strain previously identified in Pittsburgh, Pennsylvania. pYD626E was 72,800 bp long and carried four ß-lactamase genes, blaKPC-2, blaSHV-12, blaLAP-1, and blaTEM-1. In addition, it harbored qnrS1 (fluoroquinolone resistance) and dfrA14 (trimethoprim resistance). The plasmid profile and clinical history supported the in vivo transfer of this plasmid between Klebsiella pneumoniae and Escherichia coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

Read More »

Sunday, July 7, 2019

Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis.

The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids.…

Read More »

Sunday, July 7, 2019

Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation.

Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of…

Read More »

Sunday, July 7, 2019

Complete genome sequence of MIDG2331, a genetically tractable serovar 8 clinical isolate of Actinobacillus pleuropneumoniae.

We report here the complete annotated genome sequence of a clinical serovar 8 isolate Actinobacillus pleuropneumoniae MIDG2331. Unlike the serovar 8 reference strain 405, MIDG2331 is amenable to genetic manipulation via natural transformation as well as conjugation, making it ideal for studies of gene function. Copyright © 2016 Bossé et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid.

Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,183 bp, with a G+C content of 30.5%. Copyright © 2016 Gunther et al.

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »