Menu
July 7, 2019  |  

Whole-exome targeted sequencing of the uncharacterized pine genome.

The large genome size of many species hinders the development and application of genomic tools to study them. For instance, loblolly pine (Pinus taeda L.), an ecologically and economically important conifer, has a large and yet uncharacterized genome of 21.7 Gbp. To characterize the pine genome, we performed exome capture and sequencing of 14 729 genes derived from an assembly of expressed sequence tags. Efficiency of sequence capture was evaluated and shown to be similar across samples with increasing levels of complexity, including haploid cDNA, haploid genomic DNA and diploid genomic DNA. However, this efficiency was severely reduced for probes that overlapped multiple exons, presumably because intron sequences hindered probe:exon hybridizations. Such regions could not be entirely avoided during probe design, because of the lack of a reference sequence. To improve the throughput and reduce the cost of sequence capture, a method to multiplex the analysis of up to eight samples was developed. Sequence data showed that multiplexed capture was reproducible among 24 haploid samples, and can be applied for high-throughput analysis of targeted genes in large populations. Captured sequences were de novo assembled, resulting in 11 396 expanded and annotated gene models, significantly improving the knowledge about the pine gene space. Interspecific capture was also evaluated with over 98% of all probes designed from P. taeda that were efficient in sequence capture, were also suitable for analysis of the related species Pinus elliottii Engelm.© 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.


July 7, 2019  |  

An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.

The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25?361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107?821, 61% larger than the previous assembly. © The Author 2017. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.