June 1, 2021  |  

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.


June 1, 2021  |  

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.


July 19, 2019  |  

Towards precision medicine.

There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery – including DNA-sequencing technologies and analysis algorithms – need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision.


July 19, 2019  |  

Characterization of a human-specific tandem repeat associated with bipolar disorder and schizophrenia.

Bipolar disorder (BD) and schizophrenia (SCZ) are highly heritable diseases that affect more than 3% of individuals worldwide. Genome-wide association studies have strongly and repeatedly linked risk for both of these neuropsychiatric diseases to a 100 kb interval in the third intron of the human calcium channel gene CACNA1C. However, the causative mutation is not yet known. We have identified a human-specific tandem repeat in this region that is composed of 30 bp units, often repeated hundreds of times. This large tandem repeat is unstable using standard polymerase chain reaction and bacterial cloning techniques, which may have resulted in its incorrect size in the human reference genome. The large 30-mer repeat region is polymorphic in both size and sequence in human populations. Particular sequence variants of the 30-mer are associated with risk status at several flanking single-nucleotide polymorphisms in the third intron of CACNA1C that have previously been linked to BD and SCZ. The tandem repeat arrays function as enhancers that increase reporter gene expression in a human neural progenitor cell line. Different human arrays vary in the magnitude of enhancer activity, and the 30-mer arrays associated with increased psychiatric disease risk status have decreased enhancer activity. Changes in the structure and sequence of these arrays likely contribute to changes in CACNA1C function during human evolution and may modulate neuropsychiatric disease risk in modern human populations. Copyright © 2018. Published by Elsevier Inc.


July 7, 2019  |  

It’s more than stamp collecting: how genome sequencing can unify biological research.

The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to ‘big science’ survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

A vast genomic deletion in the C56BL/6 genome affects different genes within the Ifi200 cluster on chromosome 1 and mediates obesity and insulin resistance.

Obesity, the excessive accumulation of body fat, is a highly heritable and genetically heterogeneous disorder. The complex, polygenic basis for the disease consisting of a network of different gene variants is still not completely known.In the current study we generated a BAC library of the obese-prone NZO strain to clarify the genomic alteration within the gene cluster Ifi200 on chr.1 including Ifi202b, an obesity gene that is in contrast to NZO not expressed in the lean B6 mouse. With the PacBio sequencing data of NZO BAC clones we identified a deletion spanning approximately 261.8 kb in the B6 reference genome. The deletion affects different members of the Ifi200 gene family which also includes the original first exon and 5′-regulatory parts of the Ifi202b gene and suggests to be the relevant cause of its expression deficiency in B6. In addition, the generation and characterization of congenic mice carrying the critical fragment on the B6 background demonstrate its crucial role for obesity and insulin resistance.Our data reveal the reconstruction of a complex genomic region on mouse chr.1 resulting from deletions and duplications of Ifi200 genes and suggest to be relevant for the development of obesity. The results further demonstrate the complexity of the disease and highlight the importance for studying rare genetic variants as they can be causal for large effects.


July 7, 2019  |  

The value of new genome references.

Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology. Copyright © 2016. Published by Elsevier Inc.


July 7, 2019  |  

The MHC locus and genetic susceptibility to autoimmune and infectious diseases.

In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic effects, have contributed to a better understanding of the shared and specific roles of MHC variants in different diseases. We review these advances and discuss the relationships between MHC variants involved in autoimmune and infectious diseases. Further work in this area will help to distinguish between alternative hypotheses for the role of pathogens in autoimmune disease development.


July 7, 2019  |  

Hidden genetic variation shapes the structure of functional elements in Drosophila.

Mutations that add, subtract, rearrange, or otherwise refashion genome structure often affect phenotypes, although the fragmented nature of most contemporary assemblies obscures them. To discover such mutations, we assembled the first new reference-quality genome of Drosophila melanogaster since its initial sequencing. By comparing this new genome to the existing D. melanogaster assembly, we created a structural variant map of unprecedented resolution and identified extensive genetic variation that has remained hidden until now. Many of these variants constitute candidates underlying phenotypic variation, including tandem duplications and a transposable element insertion that amplifies the expression of detoxification-related genes associated with nicotine resistance. The abundance of important genetic variation that still evades discovery highlights how crucial high-quality reference genomes are to deciphering phenotypes.


July 7, 2019  |  

Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer’s disease.

The methodology of Genome-Wide Association Screening (GWAS) has been applied for more than a decade. Translation to clinical utility has been limited, especially in Alzheimer’s Disease (AD). It has become standard practice in the analyses of more than two dozen AD GWAS studies to exclude the apolipoprotein E (APOE) region because of its extraordinary statistical support, unique thus far in complex human diseases. New genes associated with AD are proposed frequently based on SNPs associated with odds ratio (OR) < 1.2. Most of these SNPs are not located within the associated gene exons or introns but are located variable distances away. Often pathologic hypotheses for these genes are presented, with little or no experimental support. By eliminating the analyses of the APOE-TOMM40 linkage disequilibrium region, the relationship and data of several genes that are co-located in that LD region have been largely ignored. Early negative interpretations limited the interest of understanding the genetic data derived from GWAS, particularly regarding the TOMM40 gene. This commentary describes the history and problem(s) in interpretation of the genetic interrogation of the "APOE" region and provides insight into a metabolic mitochondrial basis for the etiology of AD using both APOE and TOMM40 genetics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.