X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

MetaSort untangles metagenome assembly by reducing microbial community complexity.

Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and…

Read More »

Sunday, September 22, 2019

LSCplus: a fast solution for improving long read accuracy by short read alignment.

The single molecule, real time (SMRT) sequencing technology of Pacific Biosciences enables the acquisition of transcripts from end to end due to its ability to produce extraordinarily long reads (>10 kb). This new method of transcriptome sequencing has been applied to several projects on humans and model organisms. However, the raw data from SMRT sequencing are of relatively low quality, with a random error rate of approximately 15 %, for which error correction using next-generation sequencing (NGS) short reads is typically necessary. Few tools have been designed that apply a hybrid sequencing approach that combines NGS and SMRT data, and the most…

Read More »

Sunday, July 7, 2019

A pipeline for local assembly of minisatellite alleles from single-molecule sequencing data.

The advent of Next Generation Sequencing (NGS) has led to the generation of enormous volumes of short read sequence data, cheaply and in reasonable time scales. Nevertheless, the quality of genome assemblies generated using NGS technologies has been greatly affected, compared to those generated using Sanger DNA sequencing. This is largely due to the inability of short read sequence data to scaffold repetitive structures, creating gaps, inversions and rearrangements and resulting in assemblies that are, at best, draft forms. Third generation single-molecule sequencing (SMS) technologies (e.g. Pacific Biosciences Single Molecule Real Time (SMRT) system) address this challenge by generating sequences…

Read More »

Sunday, July 7, 2019

DBG2OLC: Efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies.

The highly anticipated transition from next generation sequencing (NGS) to third generation sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost. The high error rates make the assembly of long erroneous reads of large genomes challenging because existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain advantages from three general and basic design principles: (i) Compact representation of the long reads leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors…

Read More »

Sunday, July 7, 2019

Assemblytics: a web analytics tool for the detection of variants from an assembly.

Assemblytics is a web app for detecting and analyzing variants from a de novo genome assembly aligned to a reference genome. It incorporates a unique anchor filtering approach to increase robustness to repetitive elements, and identifies six classes of variants based on their distinct alignment signatures. Assemblytics can be applied both to comparing aberrant genomes, such as human cancers, to a reference, or to identify differences between related species. Multiple interactive visualizations enable in-depth explorations of the genomic distributions of variants.http://assemblytics.com, https://github.com/marianattestad/assemblytics CONTACT: mnattest@cshl.eduSupplementary information: Supplementary data are available at Bioinformatics online.© The Author 2016. Published by Oxford University Press.…

Read More »

Sunday, July 7, 2019

MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing

DNA methylation is an important type of epigenetic modifications, where 5- methylcytosine (5mC), 6-methyadenine (6mA) and 4-methylcytosine (4mC) are the most common types. Previous efforts have been largely focused on 5mC, providing invaluable insights into epigenetic regulation through DNA methylation. Recently developed single-molecule real-time (SMRT) sequencing technology provides a unique opportunity to detect the less studied DNA 6mA and 4mC modifications at single-nucleotide resolution. With a rapidly increased amount of SMRT sequencing data generated, there is an emerging demand to systematically explore DNA 6mA and 4mC modifications from these data sets. MethSMRT is the first resource hosting DNA 6mA and…

Read More »

Sunday, July 7, 2019

WhatsHap: fast and accurate read-based phasing

Read-based phasing allows to reconstruct the haplotype structure of a sample purely from sequencing reads. While phasing is a required step for answering questions about population genetics, compound heterozygosity, and to aid in clinical decision making, there has been a lack of an accurate, usable and standards-based software. WhatsHap is a production-ready tool for highly accurate read-based phasing. It was designed from the beginning to leverage third-generation sequencing technologies, whose long reads can span many variants and are therefore ideal for phasing. WhatsHap works also well with second-generation data, is easy to use and will phase not only SNVs, but…

Read More »

Subscribe for blog updates:

Archives