With SMRT Link you can unlock the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing using our portfolio of software tools designed to set up and monitor sequencing runs, review performance metrics, analyze, visualize, and annotate your sequencing data.
Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and…
The single molecule, real time (SMRT) sequencing technology of Pacific Biosciences enables the acquisition of transcripts from end to end due to its ability to produce extraordinarily long reads (>10 kb). This new method of transcriptome sequencing has been applied to several projects on humans and model organisms. However, the raw data from SMRT sequencing are of relatively low quality, with a random error rate of approximately 15 %, for which error correction using next-generation sequencing (NGS) short reads is typically necessary. Few tools have been designed that apply a hybrid sequencing approach that combines NGS and SMRT data, and the most…
The advent of Next Generation Sequencing (NGS) has led to the generation of enormous volumes of short read sequence data, cheaply and in reasonable time scales. Nevertheless, the quality of genome assemblies generated using NGS technologies has been greatly affected, compared to those generated using Sanger DNA sequencing. This is largely due to the inability of short read sequence data to scaffold repetitive structures, creating gaps, inversions and rearrangements and resulting in assemblies that are, at best, draft forms. Third generation single-molecule sequencing (SMS) technologies (e.g. Pacific Biosciences Single Molecule Real Time (SMRT) system) address this challenge by generating sequences…
The highly anticipated transition from next generation sequencing (NGS) to third generation sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost. The high error rates make the assembly of long erroneous reads of large genomes challenging because existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain advantages from three general and basic design principles: (i) Compact representation of the long reads leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors…
Assemblytics is a web app for detecting and analyzing variants from a de novo genome assembly aligned to a reference genome. It incorporates a unique anchor filtering approach to increase robustness to repetitive elements, and identifies six classes of variants based on their distinct alignment signatures. Assemblytics can be applied both to comparing aberrant genomes, such as human cancers, to a reference, or to identify differences between related species. Multiple interactive visualizations enable in-depth explorations of the genomic distributions of variants.http://assemblytics.com, https://github.com/marianattestad/assemblytics CONTACT: mnattest@cshl.eduSupplementary information: Supplementary data are available at Bioinformatics online.© The Author 2016. Published by Oxford University Press.…
DNA methylation is an important type of epigenetic modifications, where 5- methylcytosine (5mC), 6-methyadenine (6mA) and 4-methylcytosine (4mC) are the most common types. Previous efforts have been largely focused on 5mC, providing invaluable insights into epigenetic regulation through DNA methylation. Recently developed single-molecule real-time (SMRT) sequencing technology provides a unique opportunity to detect the less studied DNA 6mA and 4mC modifications at single-nucleotide resolution. With a rapidly increased amount of SMRT sequencing data generated, there is an emerging demand to systematically explore DNA 6mA and 4mC modifications from these data sets. MethSMRT is the first resource hosting DNA 6mA and…
Read-based phasing allows to reconstruct the haplotype structure of a sample purely from sequencing reads. While phasing is a required step for answering questions about population genetics, compound heterozygosity, and to aid in clinical decision making, there has been a lack of an accurate, usable and standards-based software. WhatsHap is a production-ready tool for highly accurate read-based phasing. It was designed from the beginning to leverage third-generation sequencing technologies, whose long reads can span many variants and are therefore ideal for phasing. WhatsHap works also well with second-generation data, is easy to use and will phase not only SNVs, but…