August 19, 2021  |  Human genetics research

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.


August 19, 2021  |  Human genetics research

Application Brochure: Scalable human whole genome HiFi sequencing for rare and inherited disease research

PacBio highly accurate long reads – HiFi reads – offer a single-platform solution for rare and inherited disease research, elucidating suspected genetic causes of disease in up to ~50% of cases that have not previously been explained using short-read exome or whole genome sequencing. PacBio offers an efficient workflow, developed in collaboration with Children’s Mercy Kansas City, which provides a scalable solution for sequencing 100s to 1000s of whole human genomes per year on the Sequel II and Sequel IIe Systems.


August 19, 2021  |  Epigenetics

Application Brief: Variant detection using whole genome sequencing with HiFi reads – Best Practices

With highly accurate long reads (HiFi reads) from the Sequel II or IIe Systems you can comprehensively detect variants in 100s to 1000s of genomes in a year. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.


June 1, 2021  |  

Comprehensive structural and copy-number variant detection with long reads

To comprehensively detect large variants in human genomes, we have extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a typical human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH and short reads. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies.


April 21, 2020  |  

Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes

As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh et al. characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes.Science, this issue p. eaax2083INTRODUCTIONCharacterizing genetic variants underlying local adaptations in human populations is one of the central goals of evolutionary research. Most studies have focused on adaptive single-nucleotide variants that either arose as new beneficial mutations or were introduced after interbreeding with our now-extinct relatives, including Neanderthals and Denisovans. The adaptive role of copy number variants (CNVs), another well-known form of genomic variation generated through deletions or duplications that affect more base pairs in the genome, is less well understood, despite evidence that such mutations are subject to stronger selective pressures.RATIONALEThis study focuses on the discovery of introgressed and adaptive CNVs that have become enriched in specific human populations. We combine whole-genome CNV calling and population genetic inference methods to discover CNVs and then assess signals of selection after controlling for demographic history. We examine 266 publicly available modern human genomes from the Simons Genome Diversity Project and genomes of three ancient homininstextemdasha Denisovan, a Neanderthal from the Altai Mountains in Siberia, and a Neanderthal from Croatia. We apply long-read sequencing methods to sequence-resolve complex CNVs of interest specifically in the Melanesianstextemdashan Oceanian population distributed from Papua New Guinea to as far east as the islands of Fiji and known to harbor some of the greatest amounts of Neanderthal and Denisovan ancestry.RESULTSConsistent with the hypothesis of archaic introgression outside Africa, we find a significant excess of CNV sharing between modern non-African populations and archaic hominins (P = 0.039). Among Melanesians, we observe an enrichment of CNVs with potential signals of positive selection (n = 37 CNVs), of which 19 CNVs likely introgressed from archaic hominins. We show that Melanesian-stratified CNVs are significantly associated with signals of positive selection (P = 0.0323). Many map near or within genes associated with metabolism (e.g., ACOT1 and ACOT2), development and cell cycle or signaling (e.g., TNFRSF10D and CDK11A and CDK11B), or immune response (e.g., IFNLR1). We characterize two of the largest and most complex CNVs on chromosomes 16p11.2 and 8p21.3 that introgressed from Denisovans and Neanderthals, respectively, and are absent from most other human populations. At chromosome 16p11.2, we sequence-resolve a large duplication of >383 thousand base pairs (kbp) that originated from Denisovans and introgressed into the ancestral Melanesian population 60,000 to 170,000 years ago. This large duplication occurs at high frequency (>79%) in diverse Melanesian groups, shows signatures of positive selection, and maps adjacent to Homo sapienstextendashspecific duplications that predispose to rearrangements associated with autism. On chromosome 8p21.3, we identify a Melanesian haplotype that carries two CNVs, a ~6-kbp deletion, and a ~38-kbp duplication, with a Neanderthal origin and that introgressed into non-Africans 40,000 to 120,000 years ago. This CNV haplotype occurs at high frequency (44%) and shows signals consistent with a partial selective sweep in Melanesians. Using long-read sequencing genomic and transcriptomic data, we reconstruct the structure and complex evolutionary history for these two CNVs and discover previously undescribed duplicated genes (TNFRSF10D1, TNFRSF10D2, and NPIPB16) that show an excess of amino acid replacements consistent with the action of positive selection.CONCLUSIONOur results suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation that is absent from current reference genomes.Large adaptive-introgressed CNVs at chromosomes 8p21.3 and 16p11.2 in Melanesians.The magnifying glasses highlight structural differences between the archaic (top) and reference (bottom) genomes. Neanderthal (red) and Denisovan (blue) haplotypes encompassing large CNVs occur at high frequencies in Melanesians (44 and 79%, respectively) but are absent (black) in all non-Melanesians. These CNVs create positively selected genes (TNFRSF10D1, TNFRSF10D2, and NPIPB16) that are absent from the reference genome.Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.


April 21, 2020  |  

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.

Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test.We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases.We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs.Robust identification of CNVs by GS is possible within a clinical testing environment.


September 22, 2019  |  

PacBio sequencing of gene families – a case study with wheat gluten genes.

Amino acids in wheat (Triticum aestivum) seeds mainly accumulate in storage proteins called gliadins and glutenins. Gliadins contain a/ß-, ?- and ?-types whereas glutenins contain HMW- and LMW-types. Known gliadin and glutenin sequences were largely determined through cloning and sequencing by capillary electrophoresis. This time-consuming process prevents us to intensively study the variation of each orthologous gene copy among cultivars. The throughput and sequencing length of Pacific Bioscience RS (PacBio) single molecule sequencing platform make it feasible to construct contiguous and non-chimeric RNA sequences. We assembled 424 wheat storage protein transcripts from ten wheat cultivars by using just one single-molecule-real-time cell. The protein genes from wheat cultivar Chinese Spring are comparable to known sequences from NCBI. We demonstrated real-time sequencing of gene families with high-throughput and low-cost. This method can be applied to studies of gene amplification and copy number variation among species and cultivars. © 2013 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks.

DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.