June 1, 2021  |  

The role of androgen receptor variant AR-V9 in prostate cancer

The expression of androgen receptor (AR) variants is a frequent, yet poorly-understood mechanism of clinical resistance to AR-targeted therapy for castration-resistant prostate cancer (CRPC). Among the multiple AR variants expressed in CRPC, AR-V7 is considered the most clinically-relevant AR variant due to broad expression in CRPC, correlations of AR-V7 expression with clinical resistance, and growth inhibition when AR-V7 is knocked down in CRPC models. Therefore, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The aim of this study was to understand whether other AR variants are co-expressed with AR-V7 and promote resistance to AR-targeted therapies. To test this, we utilized RNA-seq to characterize AR expression in CRPC models. RNA-seq revealed the frequent coexpression of AR-V9 and AR-V7 in multiple CRPC models and metastases. Furthermore, long-read single-molecule real-time (SMRT) sequencing of AR isoforms revealed that AR-V7 and AR-V9 shared a common 3’terminal cryptic exon. To test this, we knocked down AR-V7 in prostate cancer cell lines and confirmed that AR-V9 mRNA and protein expression were also impacted. In reporter assays with AR-responsive promoters, AR-V9 functioned as a constitutive activator of androgen/AR signaling. Similarly, infection of AR-V9 lentiviral construct in LNCaP cells induced androgen-independent cell proliferation. In conclusion, these data implicate co-expression of AR-V9 with AR-V7 as an important component of constitutive AR signaling and therapeutic resistance in CRPC.


June 1, 2021  |  

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).


June 1, 2021  |  

A simple segue from Sanger to high-throughput SMRT Sequencing with a M13 barcoding system

High-throughput NGS methods are increasingly utilized in the clinical genomics market. However, short-read sequencing data continues to remain challenged by mapping inaccuracies in low complexity regions or regions of high homology and may not provide adequate coverage within GC-rich regions of the genome. Thus, the use of Sanger sequencing remains popular in many clinical sequencing labs as the gold standard approach for orthogonal validation of variants and to interrogate missed regions poorly covered by second-generation sequencing. The use of Sanger sequencing can be less than ideal, as it can be costly for high volume assays and projects. Additionally, Sanger sequencing generates read lengths shorter than the region of interest, which limits its ability to accurately phase allelic variants. High-throughput SMRT Sequencing overcomes the challenges of both the first- and second-generation sequencing methods. PacBio’s long read capability allows sequencing of full-length amplicons


June 1, 2021  |  

Comprehensive variant detection in a human genome with PacBio high-fidelity reads

Human genomic variations range in size from single nucleotide substitutions to large chromosomal rearrangements. Sequencing technologies tend to be optimized for detecting particular variant types and sizes. Short reads excel at detecting SNVs and small indels, while long or linked reads are typically used to detect larger structural variants or phase distant loci. Long reads are more easily mapped to repetitive regions, but tend to have lower per-base accuracy, making it difficult to call short variants. The PacBio Sequel System produces two main data types: long continuous reads (up to 100 kbp), generated by single passes over a long template, and Circular Consensus Sequence (CCS) reads, generated by calculating the consensus of many sequencing passes over a single shorter template (500 bp to 20 kbp). The long-range information in continuous reads is useful for genome assembly and structural variant detection. The higher base accuracy of CCS effectively detects and phases short variants in single molecules. Recent improvements in library preparation protocols and sequencing chemistry have increased the length, accuracy, and throughput of CCS reads. For the human sample HG002, we collected 28-fold coverage 15 kbp high-fidelity CCS reads with an average read quality above Q20 (99% accuracy). The length and accuracy of these reads allow us to detect SNVs, indels, and structural variants not only in the Genome in a Bottle (GIAB) high confidence regions, but also in segmental duplications, HLA loci, and clinically relevant “difficult-to-map” genes. As with continuous long reads, we call structural variants at 90.0% recall compared to the GIAB structural variant benchmark “truth” set, with the added advantages of base pair resolution for variant calls and improved recall at compound heterozygous loci. With minimap2 alignments, GATK4 HaplotypeCaller variant calls, and simple variant filtration, we have achieved a SNP F-Score of 99.51% and an INDEL F-Score of 80.10% against the GIAB short variant benchmark “truth” set, in addition to calling variants outside of the high confidence region established by GIAB using previous technologies. With the long-range information available in 15 kbp reads, we applied the read-backed phasing tool WhatsHap to generate phase blocks with a mean length of 65 kbp across the entire genome. Using an alignment-based approach, we typed all major MHC class I and class II genes to at least 3-field precision. This new data type has the potential to expand the GIAB high confidence regions and “truth” benchmark sets to many previously difficult-to-map genes and allow a single sequencing protocol to address both short variants and large structural variants.


June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 10-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a 12kb library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II System with three SMRT Cells 8M. The CCS algorithm was used to generate highly-accurate (average 99.8%) 11.4kb reads, which were mapped to the hg19 reference with pbmm2. We detected small variants using Google DeepVariant with a model trained for CCS and phased the variants using WhatsHap. Structural variants were detected with pbsv. Variant calls were evaluated against Genome in a Bottle (GIAB) benchmarks. Results: With these reads, DeepVariant achieves SNP and Indel F1 scores of 99.82% and 96.70% against the GIAB truth set, and pbsv achieves 95.94% recall on structural variants longer than 50bp. Using WhatsHap, small variants were phased into haplotype blocks with 105kb N50. The improved mappability of long reads allows us to align to and detect variants in medically relevant genes such as CYP2D6 and PMS2 that have proven “difficult-to-map” with short reads. Conclusions: These highly-accurate long reads combine the mappability and ability to detect structural variants of long reads with the accuracy and ability to detect small variants of short reads.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.