fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Complete nucleotide sequences of bla(CTX-M)-harboring IncF plasmids from community-associated Escherichia coli strains in the United States.

Community-associated infections due to Escherichia coli producing CTX-M-type extended-spectrum ß-lactamases are increasingly recognized in the United States. The bla(CTX-M) genes are frequently carried on IncF group plasmids. In this study, bla(CTX-M-15)-harboring plasmids pCA14 (sequence type 131 [ST131]) and pCA28 (ST44) and bla(CTX-M-14)-harboring plasmid pCA08 (ST131) were sequenced and characterized. The three plasmids were closely related to other IncFII plasmids from continents outside the United States in the conserved backbone region and multiresistance regions (MRRs). Each of the bla(CTX-M-15)-carrying plasmids pCA14 and pCA28 belonged to F31:A4:B1 (FAB [FII, FIA, FIB] formula) and showed a high level of similarity (92% coverage of…

Read More »

Friday, July 19, 2019

Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition.

Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions,…

Read More »

Friday, July 19, 2019

Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America.

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics.We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades.Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had…

Read More »

Friday, July 19, 2019

Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates.

We report the discovery and confirmation of 23 novel mutations with previously undocumented role in isoniazid (INH) drug resistance, in catalase-peroxidase (katG) gene of Mycobacterium tuberculosis (Mtb) isolates. With these mutations, a synonymous mutation in fabG1 (g609a), and two canonical mutations, we were able to explain 98% of the phenotypic resistance observed in 366 clinical Mtb isolates collected from four high tuberculosis (TB)-burden countries: India, Moldova, Philippines, and South Africa. We conducted overlapping targeted and whole-genome sequencing for variant discovery in all clinical isolates with a variety of INH-resistant phenotypes. Our analysis showed that just two canonical mutations (katG 315AGC-ACC…

Read More »

Friday, July 19, 2019

Recurrent methicillin-resistant Staphylococcus aureus cutaneous abscesses and selection of reduced chlorhexidine susceptibility during chlorhexidine use.

We describe the selection of reduced chlorhexidine susceptibility during chlorhexidine use in a patient with two episodes of cutaneous USA300 methicillin-resistant Staphylococcus aureus abscess. The second clinical isolate harbors a novel plasmid that encodes the QacA efflux pump. Greater use of chlorhexidine for disease prevention warrants surveillance for resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

Read More »

Friday, July 19, 2019

Chromosomal integration of the Klebsiella pneumoniae carbapenemase gene, blaKPC, in Klebsiella species is elusive but not rare.

Carbapenemase genes in Enterobacteriaceae are mostly described as being plasmid associated. However, the genetic context of carbapenemase genes is not always confirmed in epidemiological surveys, and the frequency of their chromosomal integration therefore is unknown. A previously sequenced collection of blaKPC-positive Enterobacteriaceae from a single U.S. institution (2007 to 2012; n = 281 isolates from 182 patients) was analyzed to identify chromosomal insertions of Tn4401, the transposon most frequently harboring blaKPC Using a combination of short- and long-read sequencing, we confirmed five independent chromosomal integration events from 6/182 (3%) patients, corresponding to 15/281 (5%) isolates. Three patients had isolates identified…

Read More »

Friday, July 19, 2019

Single-molecule sequencing (PacBio) of the Staphylococcus capitis NRCS-A clone reveals the basis of multidrug resistance and adaptation to the Neonatal Intensive Care Unit environment.

The multi-resistant Staphylococcus capitis clone NRCS-A has recently been described as a major pathogen causing nosocomial, late-onset sepsis (LOS) in preterm neonates worldwide. NRCS-A representatives exhibit an atypical antibiotic resistance profile. Here, the complete closed genome (chromosomal and plasmid sequences) of NRCS-A prototype strain CR01 and the draft genomes of three other clinical NRCS-A strains from Australia, Belgium and the United Kingdom are annotated and compared to available non-NRCS-A S. capitis genomes. Our goal was to delineate the uniqueness of the NRCS-A clone with respect to antibiotic resistance, virulence factors and mobile genetic elements. We identified 6 antimicrobial resistance genes,…

Read More »

Friday, July 19, 2019

Complete genome sequences of isolates of Enterococcus faecium sequence type 117, a globally disseminated multidrug-resistant clone.

The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. Copyright © 2017 Tedim et al.

Read More »

Friday, July 19, 2019

Comparative genomics of two sequential Candida glabrata clinical isolates.

Candida glabrata is an important fungal pathogen which develops rapid antifungal resistance in treated patients. It is known that azole treatments lead to antifungal resistance in this fungal species and that multidrug efflux transporters are involved in this process. Specific mutations in the transcriptional regulator PDR1 result in upregulation of the transporters. In addition, we showed that the PDR1 mutations can contribute to enhance virulence in animal models. In this study, we were interested to compare genomes of two specific C. glabrata-related isolates, one of which was azole susceptible (DSY562) while the other was azole resistant (DSY565). DSY565 contained a…

Read More »

Sunday, July 7, 2019

Complete and assembled genome sequence of Bifidobacterium kashiwanohense PV20-2, isolated from the feces of an anemic Kenyan infant.

The complete genome sequence of Bifidobacterium kashiwanohense strain PV20-2, an infant feces isolate, was determined using single-molecule real-time sequencing (SMRT). Hierarchical genome assembly resulted in a completely assembled genome of 2,370,978 bp. The B. kashiwanohense PV20-2 genome is the first completely sequenced and assembled genome of the species. Copyright © 2015 Vazquez-Gutierrez et al.

Read More »

Sunday, July 7, 2019

Prognostic significance of novel katG mutations in Mycobacterium tuberculosis

By using whole genome sequencing (WGS), researchers are beginning to understand the genetic diversity of Mycobacterium tuberculosis (MTB) and its consequences for the diagnosis of multidrug-resistant tuberculosis (MDR–TB) on a genomic scale. The Global Consortium for Drug-resistant TB Diagnostics (GCDD) conducted a genome scale variant analyses of 366 clinical MTB genomes (mostly MDR/XDR [extensively drug resistant]) from four countries in order to inform the development of rapid molecular diagnostics. This project has been extended by performing an evolutionary analysis of isoniazid (INH)-resistant isolates for prognostic purposes.

Read More »

Sunday, July 7, 2019

Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing.

The global emergence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) multilocus sequence type ST258 is widely recognized. Less is known about the molecular and epidemiological details of non-ST258 K. pneumoniae in the setting of an outbreak mediated by an endemic plasmid. We describe the interplay of blaKPC plasmids and K. pneumoniae strains and their relationship to the location of acquisition in a U.S. health care institution. Whole-genome sequencing (WGS) analysis was applied to KPC-Kp clinical isolates collected from a single institution over 5 years following the introduction of blaKPC in August 2007, as well as two plasmid transformants. KPC-Kp from…

Read More »

1 2 3 4 13

Subscribe for blog updates:

Archives