April 21, 2020  |  

Chryseobacterium mulctrae sp. nov., isolated from raw cow’s milk.

A Gram-stain-negative bacterial strain, designated CA10T, was isolated from bovine raw milk sampled in Anseong, Republic of Korea. Cells were yellow-pigmented, aerobic, non-motile bacilli and grew optimally at 30?°C and pH 7.0 on tryptic soy agar without supplementation of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain CA10T belonged to the genus Chryseobacterium, family Flavobacteriaceae, and was most closely related to Chryseobacterium indoltheticum ATCC 27950T (98.75?% similarity). The average nucleotide identity and digital DNA-DNA hybridization values of strain CA10T were 94.4 and 56.9?%, respectively, relative to Chryseobacterium scophthalmum DSM 16779T, being lower than the cut-off values of 95-96?and 70?%, respectively. The predominant respiratory quinone was menaquinone-6; major polar lipid, phosphatidylethanolamine; major fatty acids, iso-C15?:?0, summed feature 9 (iso-C17?:?1?9c and/or C16?:?0 10-methyl), summed feature 3 (iso-C15?:?0 2-OH and/or C16?:?1?7c) and iso-C17?:?0 3-OH. The results of physiological, chemotaxonomic and biochemical analyses suggested that strain CA10T is a novel species of genus Chryseobacterium, for which the name Chryseobacterium mulctrae sp. nov. is proposed. The type strain is CA10T (=KACC 21234T=JCM 33443T).


April 21, 2020  |  

Mediterraneibacter butyricigenes sp. nov., a butyrate-producing bacterium isolated from human faeces.

A Gram-stain-positive, obligately anaerobic, non-motile, nonspore-forming, and rod-shaped bacterial strain, designated KGMB01110T, was isolated from a faecal sample of a healthy male in South Korea. Phylogenetic analysis based on 16S rRNA gene showed that strain KGMB01110T belonged to Clostridium cluster XIVa and was most closely related to Mediterraneibacter glycyrrhizinilyticus KCTC 5760T (95.9% 16S rRNA gene sequence similarity). The DNA G + C content of strain KGMB01110T based on its whole genome sequence was 44.1 mol%. The major cellular fatty acids (> 10%) of the isolate were C14:0 and C16:0. The strain KGMB01110T was positive for arginine dihydrolase, ß-galactosidase-6-phosphatase, and alkaline phosphatase. The strain KGMB01110T also produced acid from D-glucose and D-rhamnose, and hydrolyzed gelatin and aesculin. Furthermore, HPLC analysis and UV-tests of culture supernatant revealed that the strain KGMB01110T produced butyrate as the major end product of glucose fermentation. Based on the phylogenetic and phenotypic characteristics, strain KGMB01110T represent a novel species of the genus Mediterraneibacter in the family Lachnospiraceae. The type strain is KGMB01110T (= KCTC 15684T = CCUG 72830T).


April 21, 2020  |  

Intestinibaculum porci gen. nov., sp. nov., a new member of the family Erysipelotrichaceae isolated from the small intestine of a swine.

A strictly anaerobic, Gram-stain-positive, catalase-negative, non-motile, rod-shaped bacterium, designated SG0102T, was isolated from the small intestine of a swine. Optimal growth occurred at 37°C and pH 7.0. Furthermore, growth was observed in the presence of up to 3% (w/v) NaCl but not at salinity levels higher than 4%. The comparative analysis of 16S rRNA gene sequences showed that strain SG0102T was most closely related to Kandleria vitulina DSM 20405T (93.3%), followed by Catenibacterium mitsuokai KCTC 5053T (91.1%), Sharpea azabuensis KCTC 15217T (91.0%), and Eggerthia catenaformis DSM 5348T (89.6%). The average nucleotide identity values between strain SG0102T and related species, K. vitulina DSM 20405T, C. mitsuokai KCTC 5053T, S. azabuensis KCTC 15217T, and E. catenaformis DSM 5348T, were 71.0, 69.3, 70.0, and 69.2%, respectively. The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain SG0102T belonged to the family Erysipelotrichaceae in the class Erysipelotrichia. The DNA G + C content of the strain SG0102T was 39.5 mol%. The major cellular fatty acids (> 10%) of strain SG0102T were C16:0, C16:0 dimethyl acetal, and C18:2?9/12c. The cell wall peptidoglycan of strain SG0102T contained the meso-diaminopimelic acid. The strain SG0102T produced lactic acid as a major end product of fermentation. These distinct phenotypic and phylogenetic properties suggest that strain SG0102T represents a novel species in a novel genus of the family Erysipelotrichaceae, for which the name Intestinibaculum porci gen. nov. sp. nov. is proposed. The type strain is SG0102T (= KCTC 15725T = NBRC 113396T).


April 21, 2020  |  

Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation.

Lactobacillus mucosae is currently of interest as putative probiotics due to their metabolic capabilities and ability to colonize host mucosal niches. L. mucosae LM1 has been studied in its functions in cell adhesion and pathogen inhibition, etc. It demonstrated unique abilities to use energy from carbohydrate and non-carbohydrate sources. Due to these functions, we report the first complete genome sequence of an L. mucosae strain, L. mucosae LM1. Analysis of the pan-genome in comparison with closely-related Lactobacillus species identified a complete glycogen metabolism pathway, as well as folate biosynthesis, complementing previous proteomic data on the LM1 strain. It also revealed common and unique niche-adaptation genes among the various L. mucosae strains. The aim of this study was to derive genomic information that would reveal the probable mechanisms underlying the probiotic effect of L. mucosae LM1, and provide a better understanding of the nature of L. mucosae sp. Copyright © 2017 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa.

Pseudomonas aeruginosa displays intrinsic resistance to many antibiotics and known to acquire actively genetic mutations for further resistance. In this study, we attempted to understand genomic and transcriptomic landscapes of P. aeruginosa clinical isolates that are highly resistant to multiple antibiotics. We also aimed to reveal a mode of antibiotic resistance by elucidating transcriptional response of genes conferring antibiotic resistance. To this end, we sequenced the whole genomes and profiled genome-wide RNA transcripts of three different multi-drug resistant (MDR) clinical isolates that are phylogenetically distant from one another. Multi-layered genome comparisons with genomes of antibiotic-susceptible P. aeruginosa strains and 70 other antibiotic-resistance strains revealed both well-characterized conserved gene mutations and distinct distribution of antibiotic-resistant genes (ARGs) among strains. Transcriptions of genes involved in quorum sensing and type VI secretion systems were invariably downregulated in the MDR strains. Virulence-associated phenotypes were further examined and results indicate that our MDR strains are clearly avirulent. Transcriptions of 64 genes, logically selected to be related with antibiotic resistance in MDR strains, were active under normal growth conditions and remained unchanged during antibiotic treatment. These results propose that antibiotic resistance is achieved by a “constitutive” response scheme, where ARGs are actively expressed even in the absence of antibiotic stress, rather than a “reactive” response. Bacterial responses explored at the transcriptomic level in conjunction with their genome repertoires provided novel insights into (i) the virulence-associated phenotypes and (ii) a mode of antibiotic resistance in MDR P. aeruginosa strains.


September 22, 2019  |  

Genomic insights into the non-histamine production and proteolytic and lipolytic activities of Tetragenococcus halophilus KUD23.

Tetragenococcus halophilus KUD23, a non-histamine producer, was isolated from a traditional Korean high-salt fermented soybean paste, doenjang. The strain was safe in terms of antibiotic susceptibility, hemolytic activity and biofilm formation. It could grow on De Man-Rogosa-Sharpe agar containing 21% (w/v) NaCl, exhibited acid production at 15% NaCl, and had strain-specific proteolytic and lipolytic activities under salt stress. Complete genome analysis of T. halophilus KUD23 and comparative genomic analysis shed light on the genetic background behind these phenotypic characteristics, including non-production of histamine and proteolytic and lipolytic activities.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019  |  

Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.

A total of 22 Lactobacillus strains, which were isolated from infant feces were evaluated for their probiotic potential along with resistance to low pH and bile salts. Eight isolates (L. reuteri 3M02 and 3M03, L. gasseri 4M13, 4R22, 5R01, 5R02, and 5R13, and L. rhamnosus 4B15) with high tolerance to acid and bile salts, and ability to adhere to the intestine were screened from 22 strains. Further, functional properties of 8 Lactobacillus strains, such as anti-oxidation, inhibition of a-glucosidase activity, cholesterol-lowering, and anti-inflammation were evaluated. The properties were strain-specific. Particularly, two strains of L. rhamnosus, 4B15 (4B15) and L. gasseri 4M13 (4M13) showed considerably higher anti-oxidation, inhibition of a-glucosidase activity, and cholesterol-lowering, and greater inhibition of nitric oxide production than other strains. Moreover, the two selected strains substantially inhibited the release of inflammatory mediators such as TNF-a, IL-6, IL-1ß, and IL-10 stimulated the treatment of RAW 264.7 macrophages with LPS. In addition, whole genome sequencing and comparative genomic analysis of 4B15 and 4M13 indicated them as novel genomic strains. These results suggested that 4B15 and 4M13 showed the highest probiotic potential and have an impact on immune health by modulating pro-inflammatory cytokines.


September 22, 2019  |  

Capnocytophaga endodontalis sp. nov., isolated from a human refractory periapical abscess.

A novel Gram-negative, capnophilic, fusiform bacterium, designated strain ChDC OS43T, was isolated from a human refractory periapical abscess in the left mandibular second molar and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene sequence revealed that the strain belongs to the genus Capnocytophaga, as it showed sequence similarities to Capnocytophaga ochracea ATCC 27872T(96.30%) and C. sputigena ATCC 33612T(96.16%). The prevalent fatty acids of strain ChDC OS43Twere isoC15:0(57.54%), C16:0(5.93%), C16:03OH (5.72%), and C18:1cis 9 (4.41%). The complete genome of strain ChDC OS43Twas 3,412,686 bp, and the G+C content was 38.2 mol%. The average nucleotide identity (ANI) value between strain ChDC OS43Tand C. ochracea ATCC 27872Tor C. sputigena ATCC 33612Twas >92.01%. The genome-to-genome distance (GGD) value between strain ChDC OS43Tand C. ochracea ATCC 27872Tor C. sputigena ATCC 33612Twas 32.0 and 45.7%, respectively. Based on the results of phenotypic, chemotaxonomic, and phylogenetic analysis, strain ChDC OS43T(=?KCOM 1579T?=?KCTC 5562T?=?KCCM 42841T?=?JCM 32133T) should be classified as the type strain of a novel species of genus Capnocytophaga, for which the name Capnocytophaga endodontalis sp. nov. is proposed.


September 22, 2019  |  

Potential survival and pathogenesis of a novel strain, Vibrio parahaemolyticus FORC_022, isolated from a soy sauce marinated crab by genome and transcriptome analyses.

Vibrio parahaemolyticus can cause gastrointestinal illness through consumption of seafood. Despite frequent food-borne outbreaks of V. parahaemolyticus, only 19 strains have subjected to complete whole-genome analysis. In this study, a novel strain of V. parahaemolyticus, designated FORC_022 (Food-borne pathogen Omics Research Center_022), was isolated from soy sauce marinated crabs, and its genome and transcriptome were analyzed to elucidate the pathogenic mechanisms. FORC_022 did not include major virulence factors of thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). However, FORC_022 showed high cytotoxicity and had several V. parahaemolyticus islands (VPaIs) and other virulence factors, such as various secretion systems (types I, II, III, IV, and VI), in comparative genome analysis with CDC_K4557 (the most similar strain) and RIMD2210633 (genome island marker strain). FORC_022 harbored additional virulence genes, including accessory cholera enterotoxin, zona occludens toxin, and tight adhesion (tad) locus, compared with CDC_K4557. In addition, O3 serotype specific gene and the marker gene of pandemic O3:K6 serotype (toxRS) were detected in FORC_022. The expressions levels of genes involved in adherence and carbohydrate transporter were high, whereas those of genes involved in motility, arginine biosynthesis, and proline metabolism were low after exposure to crabs. Moreover, the virulence factors of the type III secretion system, tad locus, and thermolabile hemolysin were overexpressed. Therefore, the risk of foodborne-illness may be high following consumption of FORC_022 contaminated crab. These results provided molecular information regarding the survival and pathogenesis of V. parahaemolyticus FORC_022 strain in contaminated crab and may have applications in food safety.


September 22, 2019  |  

Coculture of marine Streptomyces sp. with Bacillus sp. produces a newpiperazic acid-bearing cyclic peptide.

Microbial culture conditions in the laboratory, which conventionally involve the cultivation of one strain in one culture vessel, are vastly different from natural microbial environments. Even though perfectly mimicking natural microbial interactions is virtually impossible, the cocultivation of multiple microbial strains is a reasonable strategy to induce the production of secondary metabolites, which enables the discovery of new bioactive natural products. Our coculture of marine Streptomyces and Bacillus strains isolated together from an intertidal mudflat led to discover a new metabolite, dentigerumycin E (1). Dentigerumycin E was determined to be a new cyclic hexapeptide incorporating three piperazic acids, N-OH-Thr, N-OH-Gly, ß-OH-Leu, and a pyran-bearing polyketide acyl chain mainly by analysis of its NMR and MS spectroscopic data. The putative PKS-NRPS biosynthetic gene cluster for dentigerumycin E was found in the Streptomyces strain, providing clear evidence that this cyclic peptide is produced by the Streptomyces strain. The absolute configuration of dentigerumycin E was established based on the advanced Marfey’s method, ROESY NMR correlations, and analysis of the amino acid sequence of the ketoreductase domain in the biosynthetic gene cluster. In biological evaluation of dentigerumycin E (1) and its chemical derivatives [2-N,16-N-deoxydenteigerumycin E (2) and dentigerumycin methyl ester (3)], only dentigerumycin E exhibited antiproliferative and antimetastatic activities against human cancer cells, indicating that N-OH and carboxylic acid functional groups are essential for the biological activity.


July 7, 2019  |  

Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29(T) isolated from salt-fermented food.

Haloterrigena jeotgali is a halophilic archaeon within the family Natrialbaceae that was isolated from shrimp jeotgal, a traditional Korean salt-fermented food. A29(T) is the type strain of H. jeotgali, and is a Gram-negative staining, non-motile, rod-shaped archaeon that grows in 10 %-30 % (w/v) NaCl. We present the annotated H. jeotgali A29(T) genome sequence along with a summary of its features. The 4,131,621 bp genome with a GC content of 64.9 % comprises 4,215 protein-coding genes and 127 RNA genes. The sequence can provide useful information on genetic mechanisms that enable haloarchaea to endure a hypersaline environment.


July 7, 2019  |  

Complete genome sequence of Novosphingobium pentaromativorans US6-1(T).

Novosphingobium pentaromativorans US6-1(T) is a species in the family Sphingomonadaceae. According to the phylogenetic analysis based on 16S rRNA gene sequence of the N. pentaromativorans US6-1(T) and nine genome-sequenced strains in the genus Novosphingobium, the similarity ranged from 93.9 to 99.9 % and the highest similarity was found with Novosphingobium sp. PP1Y (99.9 %), whereas the ANI value based on genomes ranged from 70.9 to 93 % and the highest value was 93 %. This microorganism was isolated from muddy coastal bay sediments where the environment is heavily polluted by polycyclic aromatic hydrocarbons (PAHs). It was previously shown to be capable of degrading multiple PAHs, including benzo[a]pyrene. To further understand the PAH biodegradation pathways the previous draft genome of this microorganism was revised to obtain a complete genome using Illumina MiSeq and PacBio platform. The genome of strain US6-1(T) consists of 5,457,578 bp, which includes the 3,979,506 bp chromosome and five megaplasmids. It comprises 5110 protein-coding genes and 82 RNA genes. Here, we provide an analysis of the complete genome sequence which enables the identification of new characteristics of this strain.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.