X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, February 26, 2020

Genome analysis of a bacterium that causes lameness.

Lameness is a significant problem resulting in millions of dollars in lost revenue annually. In commercial broilers, the most common cause of lameness is bacterial chondronecrosis with osteomyelitis (BCO). We are using a wire flooring model to induce lameness attributable to BCO. We used 16S ribosomal DNA sequencing to determine that Staphylococcus spp. were the main species associated with BCO. Staphylococcus agnetis, which previously had not been isolated from poultry, was the principal species isolated from the majority of the bone lesion samples. Administering S. agnetis in the drinking water to broilers reared on wire flooring increased the incidence of…

Read More »

Sunday, September 22, 2019

Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1.

In mammals, GPIHBP1 is absolutely essential for transporting lipoprotein lipase (LPL) to the lumen of capillaries, where it hydrolyzes the triglycerides in triglyceride-rich lipoproteins. In all lower vertebrate species (e.g., birds, amphibians, reptiles, fish), a gene for LPL can be found easily, but a gene for GPIHBP1 has never been found. The obvious question is whether the LPL in lower vertebrates is able to reach the capillary lumen. Using purified antibodies against chicken LPL, we showed that LPL is present on capillary endothelial cells of chicken heart and adipose tissue, colocalizing with von Willebrand factor. When the antibodies against chicken…

Read More »

Sunday, September 22, 2019

Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human.

Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5′-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences.We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5′ cap selection was performed on the embryo library to provide methodological comparison.…

Read More »

Sunday, September 22, 2019

SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes.

Numerous methods have been developed to analyse RNA sequencing (RNA-seq) data, but most rely on the availability of a reference genome, making them unsuitable for non-model organisms. Here we present superTranscripts, a substitute for a reference genome, where each gene with multiple transcripts is represented by a single sequence. The Lace software is provided to construct superTranscripts from any set of transcripts, including de novo assemblies. We demonstrate how superTranscripts enable visualisation, variant detection and differential isoform detection in non-model organisms. We further use Lace to combine reference and assembled transcriptomes for chicken and recover hundreds of gaps in the…

Read More »

Sunday, September 22, 2019

Long-read sequencing of chicken transcripts and identification of new transcript isoforms.

The chicken has long served as an important model organism in many fields, and continues to aid our understanding of animal development. Functional genomics studies aimed at probing the mechanisms that regulate development require high-quality genomes and transcript annotations. The quality of these resources has improved dramatically over the last several years, but many isoforms and genes have yet to be identified. We hope to contribute to the process of improving these resources with the data presented here: a set of long cDNA sequencing reads, and a curated set of new genes and transcript isoforms not currently represented in the…

Read More »

Sunday, September 22, 2019

Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes.

Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM) genes are clustered on chromosome 5 and to date four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome…

Read More »

Sunday, September 22, 2019

Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken.

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters…

Read More »

Sunday, September 22, 2019

Whole genome and transcriptome maps of the entirely black native Korean chicken breed Yeonsan Ogye.

Yeonsan Ogye (YO), an indigenous Korean chicken breed (Gallus gallus domesticus), has entirely black external features and internal organs. In this study, the draft genome of YO was assembled using a hybrid de novo assembly method that takes advantage of high-depth Illumina short reads (376.6X) and low-depth Pacific Biosciences (PacBio) long reads (9.7X).The contig and scaffold NG50s of the hybrid de novo assembly were 362.3 Kbp and 16.8 Mbp, respectively. The completeness (97.6%) of the draft genome (Ogye_1.1) was evaluated with single-copy orthologous genes using Benchmarking Universal Single-Copy Orthologs and found to be comparable to the current chicken reference genome…

Read More »

Friday, July 19, 2019

A new chicken genome assembly provides insight into avian genome structure.

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the…

Read More »

Friday, July 19, 2019

Comparative analysis of extended-spectrum-ß-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States.

We sequenced the genomes of ten Salmonella enterica serovar Infantis containing blaCTX-M-65 isolated from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine NARMS surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes (aph (4)-Ia, aac (3)-IVa, aph(3′ )-Ic, blaCTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1) located in two distinct sites of a megaplasmid (~316-323kb) similar to that described in a blaCTX-M-65-positive S. Infantis isolated from a patient…

Read More »

Sunday, July 7, 2019

Genome-wide epigenetic studies in chicken: A review

Over the years, farmed birds have been selected on various performance traits mainly through genetic selection. However, many studies have shown that genetics may not be the sole contributor to phenotypic plasticity. Gene expression programs can be influenced by environmentally induced epigenetic changes that may alter the phenotypes of the developing animals. Recently, high-throughput sequencing techniques became sufficiently affordable thanks to technological advances to study whole epigenetic landscapes in model plants and animals. In birds, a growing number of studies recently took advantage of these techniques to gain insights into the epigenetic mechanisms of gene regulation in processes such as…

Read More »

1 2

Subscribe for blog updates:

Archives