Menu
July 7, 2019  |  

Complete genome sequences for 59 burkholderia isolates, both pathogenic and near neighbor.

The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development. Copyright © 2015 Johnson et al.


July 7, 2019  |  

Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana.

Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATa mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.


July 7, 2019  |  

Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes.

The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica subsp. enterica serovar Agona 460004 2-1, associated with a multistate outbreak in the United States.

Within the last several years, Salmonella enterica subsp. enterica serovar Agona has been among the 20 most frequently isolated serovars in clinical cases of salmonellosis. In this report, the complete genome sequence of S. Agona strain 460004 2-1 isolated from unsweetened puffed-rice cereal during a multistate outbreak in 2008 was sequenced using single-molecule real-time DNA sequencing. Copyright © 2015 Hoffmann et al.


July 7, 2019  |  

Surveillance of Klebsiella pneumoniae and antibiotic resistance a retrospective and comparative study through a period in Nepal

Among the Enterobacteriacea Klebsiella pneumoniae is for the most part obtained from clinical samples and most probable cause of a typical form of primary pneumonia. It can also responsible for a variety of extrapulmonary infections, counting enteritis and meningitis in infants, urinary tract infections in children and adults and septicaemia in all age groups. Like wise these pathogens are significant cause of hospital acquired infections right through the world. The remarkable increase in the prevalence of antibiotic resistance in bacteria noticed in recent years represents a considerable challenge to public health microbiology worldwide. Klebsiellae have a tendency to possess antibiotic resistant plasmids; as a result, infections with multiple antibiotic-resistant strains can be likely. Only some degree of studies had been accounted in this regard from Nepal. The study was performed from January 1999 to March 2001. To come upon the existing dated antibiotic resistance pattern of Klebsiella pneumoniae. The study was carried out at TUTH laboratory with the objectives to ascertain the prevalence of Klebsiella pneumoniae in conjunction with to calculate the significance antibiotic resistance correlation between various antibiotics. By which the later 15 years analysis of antibiotic resistance was evaluated with comparison to this study.In this scrutiny the result was established that the numbers of total isolates including both klebsiella pneumoniae and other Kebsiella species were 62 from urine samples, 78 from pus samples and 96 from sputum samples and 34 from other miscellaneous samples. In this study positive culture for Klebsiella pneumoniae was 32.83% for sputum samples, 23.62.% for urine samples and 24.57% for pus samples. Majority of the strains isolated were sensitive to ß- lactamases, Floroquinolones, Aminoglycosides, Tetracycline and Cotrimoxazole, combined antibiotics. The current review study from 1999 to 2014 discloses the frequency of infections due to klebsiella pneumoniae strains in the hospitalized patients and their tendency towards antibiotic resistance was on the increase. Large quantity of antibiotics exploited for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has become a vital clinical and infection control challenge, particularly in resource-limited settings with far above the ground a raising rate of antimicrobial resistance.


July 7, 2019  |  

A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.


July 7, 2019  |  

Draft whole-genome sequences of nine non-O157 Shiga toxin-producing Escherichia coli strains.

Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen. Here, we report the draft whole-genome sequences of nine STEC strains isolated from clinical cases in the United States. This is the first report of such information for STEC of serotypes O69, H11, O145:H25, O118:H16, O91:H21, O146:H21, O45:H2, O128:H2, and O121:H19. Copyright © 2014 Lindsey et al.


July 7, 2019  |  

Complete genome sequence of Vibrio parahaemolyticus environmental strain UCM-V493.

Vibrio parahaemolyticus is the leading bacterial cause of seafood-related gastroenteritis in the world. Here, we report the complete genome sequence and annotation of an environmental strain of V. parahaemolyticus, UCM-V493, with the aim of understanding the differences between the clinical and environmental isolates of the bacteria. We also make some preliminary sequence comparisons with the clinical strain RIMD2210633.


July 7, 2019  |  

Genome sequences of 228 Shiga toxin-producing Escherichia coli isolates and 12 isolates representing other diarrheagenic E. coli pathotypes.

Shiga toxin-producing Escherichia coli (STEC) are a common cause for food-borne diarrheal illness outbreaks and sporadic cases. Here, we report the availability of the draft genome sequences of 228 STEC strains representing 32 serotypes with known pulsed-field gel electrophoresis (PFGE) types and epidemiological relationships, as well as 12 strains representing other diarrheagenic E. coli pathotypes. Copyright © 2014 Trees et al.


July 7, 2019  |  

vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus.

Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and 44,680-bp integrative conjugative element (ICE)-like sequences, designated ICE-r, that were nearly identical in the two group B streptococcal (GBS) strains. The dual vanG and ICE-r elements from both GBS strains were inserted at the same position, between bases 1328 and 1329, within the identical RNA methyltransferase (rumA) genes. A GenBank search revealed that although most GBS strains contained insertions within this specific site, only sequence type 22 (ST22) GBS strains contained highly related ICE-r derivatives. The vanG-1 element in Sa was also inserted within this position corresponding to its rumA homolog adjacent to an ICE-r derivative. vanG-1 insertions were previously reported within the same relative position in the E. faecalis rumA homolog. An ICE-r sequence perfectly conserved with respect to its counterpart in GBS-NY was apparent within the same site of the rumA homolog of a Streptococcus dysgalactiae subsp. equisimilis strain. Additionally, homologous vanG-like elements within the conserved rumA target site were evident in Roseburia intestinalis. Importance: These three streptococcal strains represent the first known vancomycin-resistant strains of their species. The collective observations made from these strains reveal a specific hot spot for insertional elements that is conserved between streptococci and different Gram-positive species. The two GBS strains potentially represent a GBS lineage that is predisposed to insertion of vanG elements. Copyright © 2014 Srinivasan et al.


July 7, 2019  |  

Surveillance of carbapenem-resistant Klebsiella pneumoniae: tracking molecular epidemiology and outcomes through a regional network.

Carbapenem resistance in Gram-negative bacteria is on the rise in the United States. A regional network was established to study microbiological and genetic determinants of clinical outcomes in hospitalized patients with carbapenem-resistant (CR) Klebsiella pneumoniae in a prospective, multicenter, observational study. To this end, predefined clinical characteristics and outcomes were recorded and K. pneumoniae isolates were analyzed for strain typing and resistance mechanism determination. In a 14-month period, 251 patients were included. While most of the patients were admitted from long-term care settings, 28% of them were admitted from home. Hospitalizations were prolonged and complicated. Nonsusceptibility to colistin and tigecycline occurred in isolates from 7 and 45% of the patients, respectively. Most of the CR K. pneumoniae isolates belonged to repetitive extragenic palindromic PCR (rep-PCR) types A and B (both sequence type 258) and carried either blaKPC-2 (48%) or blaKPC-3 (51%). One isolate tested positive for blaNDM-1, a sentinel discovery in this region. Important differences between strain types were noted; rep-PCR type B strains were associated with blaKPC-3 (odds ratio [OR], 294; 95% confidence interval [CI], 58 to 2,552; P < 0.001), gentamicin nonsusceptibility (OR, 24; 95% CI, 8.39 to 79.38; P < 0.001), amikacin susceptibility (OR, 11.0; 95% CI, 3.21 to 42.42; P < 0.001), tigecycline nonsusceptibility (OR, 5.34; 95% CI, 1.30 to 36.41; P = 0.018), a shorter length of stay (OR, 0.98; 95% CI, 0.95 to 1.00; P = 0.043), and admission from a skilled-nursing facility (OR, 3.09; 95% CI, 1.26 to 8.08; P = 0.013). Our analysis shows that (i) CR K. pneumoniae is seen primarily in the elderly long-term care population and that (ii) regional monitoring of CR K. pneumoniae reveals insights into molecular characteristics. This work highlights the crucial role of ongoing surveillance of carbapenem resistance determinants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Integrative analysis of Salmonellosis in Israel reveals association of Salmonella enterica serovar 9,12:l,v:- with extraintestinal infections, dissemination of endemic S. enterica serovar Typhimurium DT104 biotypes, and severe underreporting of outbreaks.

Salmonella enterica is the leading etiologic agent of bacterial food-borne outbreaks worldwide. This ubiquitous species contains more than 2,600 serovars that may differ in their host specificity, clinical manifestations, and epidemiology. To characterize salmonellosis epidemiology in Israel and to study the association of nontyphoidal Salmonella (NTS) serovars with invasive infections, 48,345 Salmonella cases reported and serotyped at the National Salmonella Reference Center between 1995 and 2012 were analyzed. A quasi-Poisson regression was used to identify irregular clusters of illness, and pulsed-field gel electrophoresis in conjunction with whole-genome sequencing was applied to molecularly characterize strains of interest. Three hundred twenty-nine human salmonellosis clusters were identified, representing an annual average of 23 (95% confidence interval [CI], 20 to 26) potential outbreaks. We show that the previously unsequenced S. enterica serovar 9,12:l,v:- belongs to the B clade of Salmonella enterica subspecies enterica, and we show its frequent association with extraintestinal infections, compared to other NTS serovars. Furthermore, we identified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in Israel, which are genetically distinct from other global DT104 isolates. Accumulatively, these findings indicate a severe underreporting of Salmonella outbreaks in Israel and provide insights into the epidemiology and genomics of prevalent serovars, responsible for recurring illness. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.