July 19, 2019  |  

Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain.

Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for ß-lactamases being of particular concern. Some ß-lactamases are active on a broad spectrum of ß-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-ß-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight ß-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized, including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands. One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified. Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence, suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion sequence ISKpn21 of the ISNCY family, suggesting that it uses the two-step transposition mechanism of IS3. Robust genome-based phylogeny showed that a unified Klebsiella cluster contains Enterobacter aerogenes and Raoultella, suggesting the latter genus should be abandoned.


July 19, 2019  |  

Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals.

Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to characterize strain diversity and the bla(KPC) genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a division of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular polysaccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The bla(KPC) gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations coexist within the same hospitals over time. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment. Copyright © 2014, American Association for the Advancement of Science.


July 19, 2019  |  

Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition.

Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve.Although IS26 is frequently reported to reside in resistance plasmids of clinical isolates, the characteristic hallmark of transposition, target site duplication (TSD), is generally not observed, raising questions about the mode of transposition for IS26. The previous observation of cointegrate formation during transposition implies that IS26 transposes via a replicative mechanism. The other possible outcome of replicative transposition is DNA inversion or deletion, when transposition occurs intramolecularly, and this would also generate a specific TSD pattern that might also serve as supporting evidence for the transposition mechanism. The numerous examples we present here demonstrate that replicative transposition, used by many mobile elements (including IS26 and Tn4401), is prevalent in the plasmids of clinical isolates and results in significant plasmid reorganization. This study also provides a method to trace the evolution of resistance plasmids based on TSD patterns. Copyright © 2015 He et al.


July 19, 2019  |  

Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae.

Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics.


July 19, 2019  |  

Nested Russian doll-like genetic mobility drives rapid dissemination of the Carbapenem resistance gene blaKPC

The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels, with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and frequent transposition of blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assembly, various studies have attempted to overcome this by the use of reference-based methods. We also demonstrate that, as a consequence of the genetic mobility observed in this study, plasmid structures can be extremely dynamic, and therefore these reference-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our findings demonstrate that nonclonal resistance gene dissemination can be extremely rapid, presenting significant challenges for public health surveillance and achieving effective control of antibiotic resistance. Copyright © 2016 Sheppard et al.


July 19, 2019  |  

Mechanisms of evolution in high-consequence drug resistance plasmids.

The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance.The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as transposons and integrons have been strongly associated with the rapid spread of genes responsible for antibiotic resistance. Understanding the consequences of their actions allowed us to establish unambiguous evolutionary relationships between plasmids in the analysis set. Copyright © 2016 He et al.


July 19, 2019  |  

Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure and resistance mechanisms.

Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups-18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of blaKPC-harboring plasmids between different phylogenomic groups, and repeated transposition of the blaKPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique blaKPC-harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this genus.Enterobacter spp., especially carbapenemase-producing Enterobacter spp., have emerged as a clinically significant cause of nosocomial infections. However, only limited information is available on the distribution of carbapenem resistance across this genus. Augmenting this problem is an erroneous identification of Enterobacter strains because of ambiguous typing methods and imprecise taxonomy. In this study, we used a whole-genome-based comparative phylogenetic approach to (i) revisit and redefine the genus Enterobacter and (ii) unravel the emergence and evolution of the Klebsiella pneumoniae carbapenemase-harboring Enterobacter spp. Using genomic analysis of 447 sequenced strains, we developed an improved understanding of the species designations within this complex genus and identified the diverse mechanisms driving the molecular evolution of carbapenem resistance. The findings in this study provide a solid genomic framework that will serve as an important resource in the future development of molecular diagnostics and in supporting drug discovery programs. Copyright © 2016 Chavda et al.


July 19, 2019  |  

Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing.

Carbapenemase-producing Klebsiella pneumoniae pose an increasing risk for healthcare facilities worldwide. A continuous monitoring of ST distribution and its association with resistance and virulence genes is required for early detection of successful K. pneumoniae lineages. In this study, we used WGS to characterize MDR blaOXA-48-positive K. pneumoniae isolated from inpatients at the University Medical Center Göttingen, Germany, between March 2013 and August 2014.Closed genomes for 16 isolates of carbapenemase-producing K. pneumoniae were generated by single molecule real-time technology using the PacBio RSII platform.Eight of the 16 isolates showed identical XbaI macrorestriction patterns and shared the same MLST, ST147. The eight ST147 isolates differed by only 1-25 SNPs of their core genome, indicating a clonal origin. Most of the eight ST147 isolates carried four plasmids with sizes of 246.8, 96.1, 63.6 and 61.0?kb and a novel linear plasmid prophage, named pKO2, of 54.6?kb. The blaOXA-48 gene was located on a 63.6?kb IncL plasmid and is part of composite transposon Tn1999.2. The ST147 isolates expressed the yersinabactin system as a major virulence factor. The comparative whole-genome analysis revealed several rearrangements of mobile genetic elements and losses of chromosomal and plasmidic regions in the ST147 isolates.Single molecule real-time sequencing allowed monitoring of the genetic and epigenetic microevolution of MDR OXA-48-producing K. pneumoniae and revealed in addition to SNPs, complex rearrangements of genetic elements.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

A novel Tn3-like composite transposon harboring blaVIM-1 in Klebsiella pneumoniae spp. pneumoniae isolated from river water.

We present a new plasmid (pOW16C2) with a novel Tn3-like transposon harboring blaVIM-1 from a Klebsiella pneumoniae strain isolated from river water in Switzerland.Complete nucleotide sequence of pOW16C2 was obtained using a Pacific Biosciences SMRT sequencing approach and coding sequences were predicted.The 59,228?bp sequence included a typical IncN-like backbone and a mosaic structure with blaVIM-1, aacA4, aphA15, aadA1, catB2, qnrS1, sul1, and dfrA14 conferring resistance to carbapenems and other ß-lactam antibiotics, aminoglycosides, chloramphenicol, quinolones, sulfonamides, and trimethoprim, respectively. Most of these resistance genes were inserted in a class 1 integron that was embedded in a novel Tn3-like composite transposon.IncN plasmids carrying carbapenemases are frequently isolated from K. pneumoniae strains in clinical settings. The dissemination of K. pneumoniae harboring blaVIM-1 in surface water is a cause for increased concern to public health.


July 7, 2019  |  

Complete genome sequence of a carbapenem-resistant extraintestinal pathogenic Escherichia coli strain belonging to the sequence type 131 H30R subclade.

Here, we report the completed genome sequence of a carbapenem-resistant extraintestinal pathogenic Escherichia coli sequence type 131 (ST131) isolate, MNCRE44. The isolate was obtained in 2012 in Minnesota, USA, from a sputum sample from a hospitalized patient with multiple comorbidities, and it belongs to the H30R sublineage. Copyright © 2015 Johnson et al.


July 7, 2019  |  

What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing.

We aimed to retrospectively reconstruct the timing of transmission events and pathways in order to understand why extensive preventive measures and investigations were not sufficient to prevent new cases.We extracted available information from patient charts to describe cases and to compare them to the normal population of the ward. We conducted a cohort study to identify risk factors for pathogen acquisition. We sequenced the available isolates to determine the phylogenetic relatedness of Klebsiella pneumoniae isolates on the basis of their genome sequences.The investigation comprises 37 cases and the 10 cases with ESBL (extended-spectrum beta-lactamase)-producing K. pneumoniae bloodstream infection. Descriptive epidemiology indicated that a continuous transmission from person to person was most likely. Results from the cohort study showed that ‘frequent manipulation’ (a proxy for increased exposure to medical procedures) was significantly associated with being a case (RR 1.44, 95% CI 1.02 to 2.19). Genome sequences revealed that all 48 bacterial isolates available for sequencing from 31 cases were closely related (maximum genetic distance, 12 single nucleotide polymorphisms). Based on our calculation of evolutionary rate and sequence diversity, we estimate that the outbreak strain was endemic since 2008. Epidemiological and phylogenetic analyses consistently indicated that there were additional, undiscovered cases prior to the onset of microbiological screening and that the spread of the pathogen remained undetected over several years, driven predominantly by person-to-person transmission. Whole-genome sequencing provided valuable information on the onset, course and size of the outbreak, and on possible ways of transmission. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019  |  

Surveillance of Klebsiella pneumoniae and antibiotic resistance a retrospective and comparative study through a period in Nepal

Among the Enterobacteriacea Klebsiella pneumoniae is for the most part obtained from clinical samples and most probable cause of a typical form of primary pneumonia. It can also responsible for a variety of extrapulmonary infections, counting enteritis and meningitis in infants, urinary tract infections in children and adults and septicaemia in all age groups. Like wise these pathogens are significant cause of hospital acquired infections right through the world. The remarkable increase in the prevalence of antibiotic resistance in bacteria noticed in recent years represents a considerable challenge to public health microbiology worldwide. Klebsiellae have a tendency to possess antibiotic resistant plasmids; as a result, infections with multiple antibiotic-resistant strains can be likely. Only some degree of studies had been accounted in this regard from Nepal. The study was performed from January 1999 to March 2001. To come upon the existing dated antibiotic resistance pattern of Klebsiella pneumoniae. The study was carried out at TUTH laboratory with the objectives to ascertain the prevalence of Klebsiella pneumoniae in conjunction with to calculate the significance antibiotic resistance correlation between various antibiotics. By which the later 15 years analysis of antibiotic resistance was evaluated with comparison to this study.In this scrutiny the result was established that the numbers of total isolates including both klebsiella pneumoniae and other Kebsiella species were 62 from urine samples, 78 from pus samples and 96 from sputum samples and 34 from other miscellaneous samples. In this study positive culture for Klebsiella pneumoniae was 32.83% for sputum samples, 23.62.% for urine samples and 24.57% for pus samples. Majority of the strains isolated were sensitive to ß- lactamases, Floroquinolones, Aminoglycosides, Tetracycline and Cotrimoxazole, combined antibiotics. The current review study from 1999 to 2014 discloses the frequency of infections due to klebsiella pneumoniae strains in the hospitalized patients and their tendency towards antibiotic resistance was on the increase. Large quantity of antibiotics exploited for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has become a vital clinical and infection control challenge, particularly in resource-limited settings with far above the ground a raising rate of antimicrobial resistance.


July 7, 2019  |  

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa.We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates.Plasmid pAMBL1 has 26?440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24?133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems.We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.