June 1, 2021  |  

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software: (1) whole genome sequencing data from a highly repetitive diploid fungal (Clavicorona pyxidata) and (2) whole genome sequencing data from an F1 hybrid from two inbred Arabidopsis strains: Cvi-0 and Col-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs (haplotype specific contigs) of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina® platform. For the ArabidopsisF1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. The current Falcon-Unzip method will lead to understand how to solve more difficult polyploid genome assembly problems and improve the computational efficiency for large genome assemblies. Based on this work, we can develop a pipeline enabling routinely assemble diploid or polyploid genomes as haplotigs, representing a comprehensive view of the genomes that can be studied with the information at hand.

April 21, 2020  |  

Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Ka inhibitors.

Activating mutations in PIK3CA are frequent in human breast cancer, and phosphoinositide 3-kinase alpha (PI3Ka) inhibitors have been approved for therapy. To characterize determinants of sensitivity to these agents, we analyzed PIK3CA-mutant cancer genomes and observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types, most of which (95%) are double mutations. Double PIK3CA mutations are in cis on the same allele and result in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. The biochemical mechanisms of dual mutations include increased disruption of p110a binding to the inhibitory subunit p85a, which relieves its catalytic inhibition, and increased p110a membrane lipid binding. Double PIK3CA mutations predict increased sensitivity to PI3Ka inhibitors compared with single-hotspot mutations.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

September 22, 2019  |  

Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line.

The SK-BR-3 cell line is one of the most important models for HER2+ breast cancers, which affect one in five breast cancer patients. SK-BR-3 is known to be highly rearranged, although much of the variation is in complex and repetitive regions that may be underreported. Addressing this, we sequenced SK-BR-3 using long-read single molecule sequencing from Pacific Biosciences and develop one of the most detailed maps of structural variations (SVs) in a cancer genome available, with nearly 20,000 variants present, most of which were missed by short-read sequencing. Surrounding the important ERBB2 oncogene (also known as HER2), we discover a complex sequence of nested duplications and translocations, suggesting a punctuated progression. Full-length transcriptome sequencing further revealed several novel gene fusions within the nested genomic variants. Combining long-read genome and transcriptome sequencing enables an in-depth analysis of how SVs disrupt the genome and sheds new light on the complex mechanisms involved in cancer genome evolution.© 2018 Nattestad et al.; Published by Cold Spring Harbor Laboratory Press.

September 22, 2019  |  

Epigenetic landscape influences the liver cancer genome architecture.

The accumulations of different types of genetic alterations such as nucleotide substitutions, structural rearrangements and viral genome integrations and epigenetic alterations contribute to carcinogenesis. Here, we report correlation between the occurrence of epigenetic features and genetic aberrations by whole-genome bisulfite, whole-genome shotgun, long-read, and virus capture sequencing of 373 liver cancers. Somatic substitutions and rearrangement breakpoints are enriched in tumor-specific hypo-methylated regions with inactive chromatin marks and actively transcribed highly methylated regions in the cancer genome. Individual mutation signatures depend on chromatin status, especially, signatures with a higher transcriptional strand bias occur within active chromatic areas. Hepatitis B virus (HBV) integration sites are frequently detected within inactive chromatin regions in cancer cells, as a consequence of negative selection for integrations in active chromatin regions. Ultra-high structural instability and preserved unmethylation of integrated HBV genomes are observed. We conclude that both precancerous and somatic epigenetic features contribute to the cancer genome architecture.

July 19, 2019  |  

Amplification and thrifty single-molecule sequencing of recurrent somatic structural variations.

Deletion of tumor-suppressor genes as well as other genomic rearrangements pervade cancer genomes across numerous types of solid tumor and hematologic malignancies. However, even for a specific rearrangement, the breakpoints may vary between individuals, such as the recurrent CDKN2A deletion. Characterizing the exact breakpoints for structural variants (SVs) is useful for designating patient-specific tumor biomarkers. We propose AmBre (Amplification of Breakpoints), a method to target SV breakpoints occurring in samples composed of heterogeneous tumor and germline DNA. Additionally, AmBre validates SVs called by whole-exome/genome sequencing and hybridization arrays. AmBre involves a PCR-based approach to amplify the DNA segment containing an SV’s breakpoint and then confirms breakpoints using sequencing by Pacific Biosciences RS. To amplify breakpoints with PCR, primers tiling specified target regions are carefully selected with a simulated annealing algorithm to minimize off-target amplification and maximize efficiency at capturing all possible breakpoints within the target regions. To confirm correct amplification and obtain breakpoints, PCR amplicons are combined without barcoding and simultaneously long-read sequenced using a single SMRT cell. Our algorithm efficiently separates reads based on breakpoints. Each read group supporting the same breakpoint corresponds with an amplicon and a consensus amplicon sequence is called. AmBre was used to discover CDKN2A deletion breakpoints in cancer cell lines: A549, CEM, Detroit562, MOLT4, MCF7, and T98G. Also, we successfully assayed RUNX1-RUNX1T1 reciprocal translocations by finding both breakpoints in the Kasumi-1 cell line. AmBre successfully targets SVs where DNA harboring the breakpoints are present in 1:1000 mixtures.

July 19, 2019  |  

Ribbon: Visualizing complex genome alignments and structural variation

Visualization has played an extremely important role in the current genomic revolution to inspect and understand variants, expression patterns, evolutionary changes, and a number of other relationships. However, most of the information in read-to-reference or genome-genome alignments is lost for structural variations in the one-dimensional views of most genome browsers showing only reference coordinates. Instead, structural variations captured by long reads or assembled contigs often need more context to understand, including alignments and other genomic information from multiple chromosomes. We have addressed this problem by creating Ribbon (genomeribbon.com) an interactive online visualization tool that displays alignments along both reference and query sequences, along with any associated variant calls in the sample. This way Ribbon shows patterns in alignments of many reads across multiple chromosomes, while allowing detailed inspection of individual reads (Supplementary Note 1). For example, here we show a gene fusion in the SK-BR-3 breast cancer cell line linking the genes CYTH1 and EIF3H. While it has been found in the transcriptome previously, genome sequencing did not identify a direct chromosomal fusion between these two genes. After SMRT sequencing, Ribbon shows that there are indeed long reads that span from one gene to the other, going through not one but two variants, for the first time showing the genomic link between these two genes (Figure 1a). More gene fusions of this cancer cell line are investigated in Supplementary Note 2. Figure 1b shows another complex event in this sample made simple in Ribbon: the translocation of a 4.4 kb sequence deleted from chr19 and inserted into chr16 (Figure 1b). Thus, Ribbon enables understanding of complex variants, and it may also help in the detection of sequencing and sample preparation issues, testing of aligners and variant-callers, and rapid curation of structural variant candidates (Supplementary Note 3). In addition to SAM and BAM files with long, short, or paired-end reads, Ribbon can also load coordinate files from whole genome aligners such as MUMmer. Therefore, Ribbon can be used to test assembly algorithms or inspect the similarity between species. Supplementary Note 4 shows a comparison of gorilla and human genomes using Ribbon, highlighting major structural differences. In conclusion, Ribbon is a powerful interactive web tool for viewing complex genomic alignments.

July 19, 2019  |  

Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma.

To understand how genomic heterogeneity of glioblastoma (GBM) contributes to poor therapy response, we performed DNA and RNA sequencing on GBM samples and the neurospheres and orthotopic xenograft models derived from them. We used the resulting dataset to show that somatic driver alterations including single-nucleotide variants, focal DNA alterations and oncogene amplification on extrachromosomal DNA (ecDNA) elements were in majority propagated from tumor to model systems. In several instances, ecDNAs and chromosomal alterations demonstrated divergent inheritance patterns and clonal selection dynamics during cell culture and xenografting. We infer that ecDNA was unevenly inherited by offspring cells, a characteristic that affects the oncogenic potential of cells with more or fewer ecDNAs. Longitudinal patient tumor profiling found that oncogenic ecDNAs are frequently retained throughout the course of disease. Our analysis shows that extrachromosomal elements allow rapid increase of genomic heterogeneity during GBM evolution, independently of chromosomal DNA alterations.

July 7, 2019  |  

The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.

The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption–both intentionally and through widespread cross-contamination–and for the past 60?years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500?kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.

July 7, 2019  |  

Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial.

The successes of targeted drugs with companion predictive biomarkers and the technological advances in gene sequencing have generated enthusiasm for evaluating personalized cancer medicine strategies using genomic profiling. We assessed the feasibility of incorporating real-time analysis of somatic mutations within exons of 19 genes into patient management. Blood, tumor biopsy and archived tumor samples were collected from 50 patients recruited from four cancer centers. Samples were analyzed using three technologies: targeted exon sequencing using Pacific Biosciences PacBio RS, multiplex somatic mutation genotyping using Sequenom MassARRAY and Sanger sequencing. An expert panel reviewed results prior to reporting to clinicians. A clinical laboratory verified actionable mutations. Fifty patients were recruited. Nineteen actionable mutations were identified in 16 (32%) patients. Across technologies, results were in agreement in 100% of biopsy specimens and 95% of archival specimens. Profiling results from paired archival/biopsy specimens were concordant in 30/34 (88%) patients. We demonstrated that the use of next generation sequencing for real-time genomic profiling in advanced cancer patients is feasible. Additionally, actionable mutations identified in this study were relatively stable between archival and biopsy samples, implying that cancer mutations that are good predictors of drug response may remain constant across clinical stages. Copyright © 2012 UICC.

July 7, 2019  |  

Variant review with the Integrative Genomics Viewer.

Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV’s variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR.©2017 American Association for Cancer Research.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.