July 19, 2019  |  

Population structure of mitochondrial genomes in Saccharomyces cerevisiae.

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.


July 7, 2019  |  

The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV.

Aerobic methanotrophs can grow in hostile volcanic environments and use methane as their sole source of energy. The discovery of three verrucomicrobial Methylacidiphilum strains has revealed diverse metabolic pathways used by these methanotrophs, including mechanisms through which methane is oxidized. The basis of a complete understanding of these processes and of how these bacteria evolved and are able to thrive in such extreme environments partially resides in the complete characterization of their genome and its architecture.In this study, we present the complete genome sequence of Methylacidiphilum fumariolicum SolV, obtained using Pacific Biosciences single-molecule real-time (SMRT) sequencing technology. The genome assembles to a single 2.5 Mbp chromosome with an average GC content of 41.5%. The genome contains 2,741 annotated genes and 314 functional subsystems including all key metabolic pathways that are associated with Methylacidiphilum strains, including the CBB pathway for CO2 fixation. However, it does not encode the serine cycle and ribulose monophosphate pathways for carbon fixation. Phylogenetic analysis of the particulate methane mono-oxygenase operon separates the Methylacidiphilum strains from other verrucomicrobial methanotrophs. RNA-Seq analysis of cell cultures growing in three different conditions revealed the deregulation of two out of three pmoCAB operons. In addition, genes involved in nitrogen fixation were upregulated in cell cultures growing in nitrogen fixing conditions, indicating the presence of active nitrogenase. Characterization of the global methylation state of M. fumariolicum SolV revealed methylation of adenines and cytosines mainly in the coding regions of the genome. Methylation of adenines was predominantly associated with 5′-m6ACN4GT-3′ and 5′-CCm6AN5CTC-3′ methyltransferase recognition motifs whereas methylated cytosines were not associated with any specific motif.Our findings provide novel insights into the global methylation state of verrucomicrobial methanotroph M. fumariolicum SolV. However, partial conservation of methyltransferases between M. fumariolicum SolV and M. infernorum V4 indicates potential differences in the global methylation state of Methylacidiphilum strains. Unravelling the M. fumariolicum SolV genome and its epigenetic regulation allow for robust characterization of biological processes that are involved in oxidizing methane. In turn, they offer a better understanding of the evolution, the underlying physiological and ecological properties of SolV and other Methylacidiphilum strains.


July 7, 2019  |  

Genome sequence of “Candidatus Microthrix parvicella” Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant.

Candidatus Microthrix bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: “Candidatus Microthrix parvicella” strain Bio17-1.


July 7, 2019  |  

Comparative genomic analyses of the Moraxella catarrhalis serosensitive and seroresistant lineages demonstrate their independent evolution.

The bacterial species Moraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Decay of sexual trait genes in an asexual parasitoid wasp.

Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.