Menu
July 7, 2019  |  

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


July 7, 2019  |  

Next-generation sequencing-based detection of germline L1-mediated transductions.

While active LINE-1 (L1) elements possess the ability to mobilize flanking sequences to different genomic loci through a process termed transduction influencing genomic content and structure, an approach for detecting polymorphic germline non-reference transductions in massively-parallel sequencing data has been lacking.Here we present the computational approach TIGER (Transduction Inference in GERmline genomes), enabling the discovery of non-reference L1-mediated transductions by combining L1 discovery with detection of unique insertion sequences and detailed characterization of insertion sites. We employed TIGER to characterize polymorphic transductions in fifteen genomes from non-human primate species (chimpanzee, orangutan and rhesus macaque), as well as in a human genome. We achieved high accuracy as confirmed by PCR and two single molecule DNA sequencing techniques, and uncovered differences in relative rates of transduction between primate species.By enabling detection of polymorphic transductions, TIGER makes this form of relevant structural variation amenable for population and personal genome analysis.


July 7, 2019  |  

Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore technologies (ONT) produce reads over 10?kb in length, which have enabled high-quality genome assembly at an affordable cost. However, at present, long reads have an error rate as high as 10-15%. Complex and computationally intensive pipelines are required to assemble such reads.We present a new mapper, minimap and a de novo assembler, miniasm, for efficiently mapping and assembling SMRT and ONT reads without an error correction stage. They can often assemble a sequencing run of bacterial data into a single contig in a few minutes, and assemble 45-fold Caenorhabditis elegans data in 9?min, orders of magnitude faster than the existing pipelines, though the consensus sequence error rate is as high as raw reads. We also introduce a pairwise read mapping format and a graphical fragment assembly format, and demonstrate the interoperability between ours and current tools.https://github.com/lh3/minimap and https://github.com/lh3/miniasmhengli@broadinstitute.orgSupplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Use of multiple sequencing technologies to produce a high-quality genome of the fungus Pseudogymnoascus destructans, the causative agent of bat white-nose syndrome.

White-nose syndrome has recently emerged as one of the most devastating wildlife diseases recorded, causing widespread mortality in numerous bat species throughout eastern North America. Here, we present an improved reference genome of the fungal pathogen Pseudogymnoascus destructans for use in comparative genomic studies. Copyright © 2016 Drees et al.


July 7, 2019  |  

Comparative genomics and transcriptomics of Pichia pastoris.

Pichia pastoris has emerged as an important alternative host for producing recombinant biopharmaceuticals, owing to its high cultivation density, low host cell protein burden, and the development of strains with humanized glycosylation. Despite its demonstrated utility, relatively little strain engineering has been performed to improve Pichia, due in part to the limited number and inconsistent frameworks of reported genomes and transcriptomes. Furthermore, the co-mingling of genomic, transcriptomic and fermentation data collected about Komagataella pastoris and Komagataella phaffii, the two strains co-branded as Pichia, has generated confusion about host performance for these genetically distinct species. Generation of comparative high-quality genomes and transcriptomes will enable meaningful comparisons between the organisms, and potentially inform distinct biotechnological utilies for each species.Here, we present a comprehensive and standardized comparative analysis of the genomic features of the three most commonly used strains comprising the tradename Pichia: K. pastoris wild-type, K. phaffii wild-type, and K. phaffii GS115. We used a combination of long-read (PacBio) and short-read (Illumina) sequencing technologies to achieve over 1000X coverage of each genome. Construction of individual genomes was then performed using as few as seven individual contigs to create gap-free assemblies. We found substantial syntenic rearrangements between the species and characterized a linear plasmid present in K. phaffii. Comparative analyses between K. phaffii genomes enabled the characterization of the mutational landscape of the GS115 strain. We identified and examined 35 non-synonomous coding mutations present in GS115, many of which are likely to impact strain performance. Additionally, we investigated transcriptomic profiles of gene expression for both species during cultivation on various carbon sources. We observed that the most highly transcribed genes in both organisms were consistently highly expressed in all three carbon sources examined. We also observed selective expression of certain genes in each carbon source, including many sequences not previously reported as promoters for expression of heterologous proteins in yeasts.Our studies establish a foundation for understanding critical relationships between genome structure, cultivation conditions and gene expression. The resources we report here will inform and facilitate rational, organism-wide strain engineering for improved utility as a host for protein production.


July 7, 2019  |  

Whole-genome sequencing recommendations

Recent technological developments have revolutionized the way we perform genetic analyses. In particular whole-genome sequencing provides access to the entire genetic makeup of an individual, and it is now an affordable approach for many research groups. As a consequence genome sequencing is pervading many fields of biological research. Sequencing technologies are evolving rapidly and so do their applications. Here we provide a first primer on whole-genome sequencing, focusing on two of the most popular applications: (1) de novo genome sequencing, in which the objective is obtaining a high-quality genome assembly that can serve as a reference for a species or variety, and (2) genome resequencing, when there is an available reference genome and the objective is to map sequence variation of an individual or a set of individuals. It is not our intention to provide a comprehensive overview of current methodologies that will likely soon become obsolete, but rather focus on general principles that will have a more general applicability.


July 7, 2019  |  

Expansion of lysine-rich repeats in Plasmodium proteins generates novel localisation sequences that target the periphery of the host erythrocyte.

Repetitive low-complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localise to the erythrocyte periphery where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, expression GARP fragments from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighbouring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum, and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion, as well as in previously uncharacterised exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure. Copyright © 2016, The American Society for Biochemistry and Molecular Biology.


July 7, 2019  |  

FDA-CDC antimicrobial resistance isolate bank: A publicly-available resource to support research, development and regulatory requirements.

The FDA-CDC Antimicrobial Resistance Isolate Bank was created in July 2015 as a publicly available resource to combat antimicrobial resistance. It is a curated repository of bacterial isolates with an assortment of clinically-important resistance mechanisms that have been phenotypically and genotypically characterized. In the first two years of operation, the Bank offered 14 panels comprising 496 unique isolates and had filled 486 orders from 394 institutions throughout the United States. New panels are being added. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

De novo mutations resolve disease transmission pathways in clonal malaria

Detecting de novo mutations in viral and bacterial pathogens enables researchers to reconstruct detailed networks of disease transmission and is a key technique in genomic epidemiology. However, these techniques have not yet been applied to the malaria parasite, Plasmodium falciparum, in which a larger genome, slower generation times, and a complex life cycle make them difficult to implement. Here, we demonstrate the viability of de novo mutation studies in P. falciparum for the first time. Using a combination of sequencing, library preparation, and genotyping methods that have been optimized for accuracy in low-complexity genomic regions, we have detected de novo mutations that distinguish nominally identical parasites from clonal lineages. Despite its slower evolutionary rate compared with bacterial or viral species, de novo mutation can be detected in P. falciparum across timescales of just 1-2?years and evolutionary rates in low-complexity regions of the genome can be up to twice that detected in the rest of the genome. The increased mutation rate allows the identification of separate clade expansions that cannot be found using previous genomic epidemiology approaches and could be a crucial tool for mapping residual transmission patterns in disease elimination campaigns and reintroduction scenarios.


July 7, 2019  |  

ReadTools: A universal toolkit for handling sequence data from different sequencing platforms.

Sequencing whole genomes has become a standard research tool in many disciplines including Molecular Ecology, but the rapid technological advances in combination with several competing platforms have resulted in a confusing diversity of formats. This lack of standard formats causes several problems, such as undocumented preprocessing steps or the loss of information in downstream software tools, which do not account for the specifics of the different available formats. ReadTools is an open-source Java toolkit designed to standardize and preprocess read data from different platforms. It manages FASTQ- and SAM-formatted inputs while dealing with platform-specific peculiarities and provides a standard SAM compliant output. The code and executable are available at https://github.com/magicDGS/ReadTools.© 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Short genome report of cellulose-producing commensal Escherichia coli 1094.

Bacterial surface colonization and biofilm formation often rely on the production of an extracellular polymeric matrix that mediates cell-cell and cell-surface contacts. In Escherichia coli and many Betaproteobacteria and Gammaproteobacteria cellulose is often the main component of the extracellular matrix. Here we report the complete genome sequence of the cellulose producing strain E. coli 1094 and compare it with five other closely related genomes within E. coli phylogenetic group A. We present a comparative analysis of the regions encoding genes responsible for cellulose biosynthesis and discuss the changes that could have led to the loss of this important adaptive advantage in several E. coli strains. Data deposition: The annotated genome sequence has been deposited at the European Nucleotide Archive under the accession number PRJEB21000.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.