X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, March 30, 2020

AGBT Roche and PacBio Workshop: Leveraging SMRT Sequencing technology for developing niche assays with diagnostic potential

Robert Sebra reports the use of SMRT Sequencing at the Icahn Institute and presents some early data from the new Sequel System. Topics include: Targeted sequencing applications for CYP2D6 metabolism and Gaucher disease, tandem repeat detection in FTD/ALS patients, structural variation detection for Goldenhar Syndrome, inverted PCR assays for detection of DNA damage in Glioblastome, whole gene BRCA sequencing, and sensitive somatic variant detection in heterogeneous tissues.

Read More »

Wednesday, February 26, 2020

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but…

Read More »

Wednesday, February 26, 2020

Highly sensitive and cost-effective detection of BRCA1 and BRCA2 cancer variants in FFPE samples using Multiplicom’s MASTR technology & Single Molecule, Real-Time (SMRT) Sequencing

Specific mutations in BRCA1 and BRCA2 have been shown to be associated with several types of cancers. Molecular profiling of cancer samples requires assays capable of accurately detecting the entire spectrum of variants, including those at relatively low frequency. Next-Generation Sequencing (NGS) has been a powerful tool for researchers to better understand cancer genetics. Here we describe a targeted re-sequencing workflow that combines barcoded amplification of BRCA1 and BRCA2 exons from 12 FFPE tumor samples using Multiplicom’s MASTR technology with PacBio SMRT Sequencing. This combination allows for the accurate detection of variants in a cost-effective and timely manner.

Read More »

Wednesday, February 26, 2020

Targeted sequencing and chromosomal haplotype assembly using TLA and SMRT Sequencing

With the increasing availability of whole-genome sequencing, haplotype reconstruction of individual genomes, or haplotype assembly, remains unsolved. Like the de novo genome assembly problem, haplotype assembly is greatly simplified by having more long-range information. The Targeted Locus Amplification (TLA) technology from Cergentis has the unique capability of targeting a specific region of the genome using a single primer pair and yielding ~2 kb DNA circles that are comprised of ~500 bp fragments. Fragments from the same circle come from the same haplotype and follow an exponential decay in distance from the target region, with a span that reaches the multi-megabase…

Read More »

Wednesday, February 26, 2020

Targeted sequencing using a long-read sequencing technology

Targeted sequencing employing PCR amplification is a fundamental approach to studying human genetic disease. PacBio’s Sequel System and supporting products provide an end-to-end solution for amplicon sequencing, offering better performance to Sanger technology in accuracy, read length, throughput, and breadth of informative data. Sample multiplexing is supported with three barcoding options providing the flexibility to incorporate unique sample identifiers during target amplification or library preparation. Multiplexing is key to realizing the full capacity of the 1 million individual reactions per Sequel SMRT Cell. Two analysis workflows that can generate high-accuracy results support a wide range of amplicon sizes in two…

Read More »

Sunday, September 22, 2019

A multiplex homology-directed DNA repair assay reveals the impact of more than 1,000 BRCA1 missense substitution variants on protein function.

Loss-of-function pathogenic variants in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for sequence changes in BRCA1 frequently reveals a missense variant for which the impact on cancer risk and on the molecular function of BRCA1 is unknown. Functional BRCA1 is required for the homology-directed repair (HDR) of double-strand DNA breaks, a critical activity for maintaining genome integrity and tumor suppression. Here, we describe a multiplex HDR reporter assay for concurrently measuring the effects of hundreds of variants of BRCA1 for their role in DNA repair. Using this assay, we characterized the effects of 1,056 amino acid…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »