July 19, 2019  |  

Genome structural diversity among 31 Bordetella pertussis isolates from two recent U.S. whooping cough statewide epidemics

During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B.~pertussis populations.IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B.~pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B.~pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.


July 19, 2019  |  

The history of Bordetella pertussis genome evolution includes structural rearrangement.

Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology.IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen’s evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Whole-genome sequence of a Bordetella pertussis Brazilian vaccine strain.

Despite the reduction in incidence after vaccination, pertussis disease is still considered a public health problem worldwide, mainly due to recent and potential new outbreaks. We report here the complete genome of the Bordetella pertussis Butantan strain used in the Brazilian National Immunization Program as a whole-cell pertussis antigen to compose vaccines such as DTwP (diphtheria, tetanus, and whole-cell pertussis).


July 7, 2019  |  

Complete genome sequence of Bordetella pertussis D420.

Bordetella pertussis is the causative agent of whooping cough, a highly contagious, acute respiratory illness that has seen resurgence despite the use of vaccines. We present the complete genome sequence of a clinical strain of B. pertussis, D420, which is representative of a currently circulating clade of this pathogen. Copyright © 2015 Boinett et al.


July 7, 2019  |  

Complete genome sequences of two Bordetella hinzii strains isolated from humans.

Bordetella hinzii is primarily recovered from poultry but can also colonize mammalian hosts and immunocompromised humans. Here, we report the first complete genome sequences of B. hinzii in two isolates recovered from humans. The availability of these sequences will hopefully aid in identifying host-specific determinants variably present within this species. Copyright © 2015 Weigand et al.


July 7, 2019  |  

Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage.

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin. Copyright © 2015 Bart et al.


July 7, 2019  |  

Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages.

Bordetella pertussis is the causative agent of pertussis, a disease which has resurged despite vaccination. We report the complete, annotated genomes of isolates B1917 and B1920, representing two lineages predominating globally in the last 50 years. The B1917 lineage has been associated with the resurgence of pertussis in the 1990s. Copyright © 2014 Bart et al.


July 7, 2019  |  

Complete genome sequence of Bordetella pertussis Pelita III, the production strain for an Indonesian whole-cell pertussis vaccine.

PT Bio Farma, the sole World Health Organization-approved Indonesian vaccine producer, manufactures a whole-cell whooping cough vaccine (wP) that, as part of a pentavalent diphtheria-tetanus-pertussis/hepatitis B/Haemophilus influenzae b (DTP/HB/Hib) vaccine, is used in Indonesia and many other countries. We report here the whole-genome sequence for Bordetella pertussis Pelita III, PT Bio Farma’s wP production strain. Copyright © 2017 Efendi et al.


July 7, 2019  |  

Whole-genome sequences of bacteremia isolates of Bordetella holmesii.

Bordetella holmesii causes respiratory and invasive diseases in humans, but its pathogenesis remains poorly understood. We report here the genome sequences of seven bacteremia isolates of B. holmesii, including the type strain. Comparative analysis of these sequences may aid studies of B. holmesii biology and assist in the development of species-specific diagnostic strategies. Copyright © 2017 Tettelin et al.


July 7, 2019  |  

Complete genome sequence of Bordetella pertussis strain VA-190 isolated from a vaccinated 10-year-old patient with whooping cough.

The number of cases of pertussis has increased in the United States despite vaccination. We present the genome of an isolate of Bordetella pertussis from a vaccinated patient from Virginia. The genome was sequenced by long-read methodology and compared to that of a clinical isolate used for laboratory studies, D420. Copyright © 2016 Eby et al.


July 7, 2019  |  

Complete genome sequences of four different Bordetella sp. isolates causing human respiratory infections.

Species of the genus Bordetella associate with various animal hosts, frequently causing respiratory disease. Bordetella pertussis is the primary agent of whooping cough and other Bordetella species can cause similar cough illness. Here, we report four complete genome sequences from isolates of different Bordetella species recovered from human respiratory infections. Copyright © 2016 Weigand et al.


July 7, 2019  |  

Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development.

Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.