April 21, 2020  |  

DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions

The largest genome-wide association studies have identified schizophrenia and intelligence associated variants in the MIR137HG locus containing genes encoding microRNA-137 and microRNA-2682. In the present study, we investigated DNA methylation in the MIR137HG intragenic CpG island (CGI) in the peripheral blood of 44 patients with schizophrenia and 50 healthy controls. The CGI included the entire MIR137 gene and the region adjacent to the 5′-end of MIR2682. The aim of the study was to examine the relationship of the CGI methylation with schizophrenia and cognitive functioning. The methylation level of 91 CpG located in the selected region was established for each participant by means of single-molecule real-time bisulfite sequencing. All subjects completed the battery of neuropsychological tests. We found that the CGI was hypomethylated in both groups, except for one site—CpG (chr1: 98?511?049), with significant interindividual variability in methylation. A higher level of methylation of this CpG was seen in male patients and was associated with a decrease in the cognitive index in the combined sample of patients and controls. Our data suggest that further investigation of mechanisms that regulate the MIR137 and MIR2682 genes expression might help to understand the molecular basis of cognitive deficits in schizophrenia.


April 21, 2020  |  

DNA methylation analysis.

DNA methylation is a process by which methyl groups are added to cytosine or adenine. DNA methylation can change the activity of the DNA molecule without changing the sequence. Methylation of 5-methylcytosine (5mC) is widespread in both eukaryotes and prokaryotes, and it is a very important epigenetic modification event, which can regulate gene activity and influence a number of key processes such as genomic imprinting, cell differentiation, transcriptional regulation, and chromatin remodeling. Profiling DNA methylation across the genome is critical to understanding the influence of methylation in normal biology and diseases including cancer. Recent discoveries of 5-methylcytosine (5mC) oxidation derivatives including 5-hydroxymethylcytosine (5hmC), 5-formylcytsine (5fC), and 5-carboxycytosine (5caC) in mammalian genome further expand our understanding of the methylation regulation. Genome-wide analyses such as microarrays and next-generation sequencing technologies have been used to assess large fractions of the methylome. A number of different quantitative approaches have also been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing, pyrosequencing etc. These methods have been used to generate base-resolution maps of 5mC and its oxidation derivatives in genomic samples. The focus of this chapter is to provide the methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.


September 22, 2019  |  

Methylation of the reelin gene promoter in peripheral blood and its relationship with the cognitive function of schizophrenia patients.

There is a decrease in the expression of the reelin gene (RELN) in the brain of schizophrenia patients, which can underlie observed cognitive abnormalities. It is suggested that this decrease is caused by the hypermethylation of the RELN promoter. The aim of the study was to investigate methylation of the RELN promoter in the peripheral blood of schizophrenia patients and its association with their cognitive deficits. A modified SMRT-BS (single-molecule real-time bisulfite sequencing) was used. We determined the methylation rate of 170 CpG sites within a 1465 bp DNA region containing the entire CpG island in the RELN promoter in 51 schizophrenia patients and 52 healthy controls. All subjects completed a battery of neuropsychological tests. There were no DNA methylation changes associated with schizophrenia. Most CpGs sites were unmethylated in both groups. At the same time, there was a variability in the methylation level of different regions within the promoter. The methylation level in the area from -258 to -151 bp relative to RELN transcription start site was a significant predictor of the index of patients’ cognitive functioning if sex, age, smoking, education, and polymorphism rsl858815 had been considered. The positive correlation between the methylation rate in this region and cognitive index suggests that the hypomethylation of the RELN promoter could contribute to the development of cognitive deficits in schizophrenia.


September 22, 2019  |  

Relationship between Alzheimer’s disease-associated SNPs within the CLU gene, local DNA methylation and episodic verbal memory in healthy and schizophrenia subjects.

Genetic variation may impact on local DNA methylation patterns. Therefore, information about allele-specific DNA methylation (ASM) within disease-related loci has been proposed to be useful for the interpretation of GWAS results. To explore mechanisms that may underlie associations between Alzheimer’s disease (AD) and schizophrenia risk CLU gene and verbal memory, one of the most affected cognitive domains in both conditions, we studied DNA methylation in a region between AD-associated SNPs rs9331888 and rs9331896 in 72 healthy individuals and 73 schizophrenia patients. Using single-molecule real-time bisulfite sequencing we assessed the haplotype-dependent ASM in this region. We then investigated whether its methylation could influence episodic verbal memory measured with the Rey Auditory Verbal Learning Test in these two cohorts. The region showed a complex methylation pattern, which was similar in healthy and schizophrenia individuals and unrelated to haplotypes. The pattern predicted memory scores in controls. The results suggest that epigenetic modifications within the CLU locus may play a role in memory variation, independent of ASM. Copyright © 2018 Elsevier B.V. All rights reserved.


July 19, 2019  |  

Quantitative and multiplexed DNA methylation analysis using long-read single-molecule real-time bisulfite sequencing (SMRT-BS).

DNA methylation has essential roles in transcriptional regulation, imprinting, X chromosome inactivation and other cellular processes, and aberrant CpG methylation is directly involved in the pathogenesis of human imprinting disorders and many cancers. To address the need for a quantitative and highly multiplexed bisulfite sequencing method with long read lengths for targeted CpG methylation analysis, we developed single-molecule real-time bisulfite sequencing (SMRT-BS).Optimized bisulfite conversion and PCR conditions enabled the amplification of DNA fragments up to ~1.5 kb, and subjecting overlapping 625-1491 bp amplicons to SMRT-BS indicated high reproducibility across all amplicon lengths (r?=?0.972) and low standard deviations (=0.10) between individual CpG sites sequenced in triplicate. Higher variability in CpG methylation quantitation was correlated with reduced sequencing depth, particularly for intermediately methylated regions. SMRT-BS was validated by orthogonal bisulfite-based microarray (r?=?0.906; 42 CpG sites) and second generation sequencing (r?=?0.933; 174 CpG sites); however, longer SMRT-BS amplicons (>1.0 kb) had reduced, but very acceptable, correlation with both orthogonal methods (r?=?0.836-0.897 and r?=?0.892-0.927, respectively) compared to amplicons less than ~1.0 kb (r?=?0.940-0.951 and r?=?0.948-0.963, respectively). Multiplexing utility was assessed by simultaneously subjecting four distinct CpG island amplicons (702-866 bp; 325 CpGs) and 30 hematological malignancy cell lines to SMRT-BS (average depth of 110X), which identified a spectrum of highly quantitative methylation levels across all interrogated CpG sites and cell lines.SMRT-BS is a novel, accurate and cost-effective targeted CpG methylation method that is amenable to a high degree of multiplexing with minimal clonal PCR artifacts. Increased sequencing depth is necessary when interrogating longer amplicons (>1.0 kb) and the previously reported bisulfite sequencing PCR bias towards unmethylated DNA should be considered when measuring intermediately methylated regions. Coupled with an optimized bisulfite PCR protocol, SMRT-BS is capable of interrogating ~1.5 kb amplicons, which theoretically can cover ~91% of CpG islands in the human genome.


July 19, 2019  |  

CGGBP1 mitigates cytosine methylation at repetitive DNA sequences.

CGGBP1 is a repetitive DNA-binding transcription regulator with target sites at CpG-rich sequences such as CGG repeats and Alu-SINEs and L1-LINEs. The role of CGGBP1 as a possible mediator of CpG methylation however remains unknown. At CpG-rich sequences cytosine methylation is a major mechanism of transcriptional repression. Concordantly, gene-rich regions typically carry lower levels of CpG methylation than the repetitive elements. It is well known that at interspersed repeats Alu-SINEs and L1-LINEs high levels of CpG methylation constitute a transcriptional silencing and retrotransposon inactivating mechanism.Here, we have studied genome-wide CpG methylation with or without CGGBP1-depletion. By high throughput sequencing of bisulfite-treated genomic DNA we have identified CGGBP1 to be a negative regulator of CpG methylation at repetitive DNA sequences. In addition, we have studied CpG methylation alterations on Alu and L1 retrotransposons in CGGBP1-depleted cells using a novel bisulfite-treatment and high throughput sequencing approach.The results clearly show that CGGBP1 is a possible bidirectional regulator of CpG methylation at Alus, and acts as a repressor of methylation at L1 retrotransposons.


July 19, 2019  |  

Comparative DNA methylation and gene expression analysis identifies novel genes for structural congenital heart diseases.

For the majority of congenital heart diseases (CHDs), the full complexity of the causative molecular network, which is driven by genetic, epigenetic, and environmental factors, is yet to be elucidated. Epigenetic alterations are suggested to play a pivotal role in modulating the phenotypic expression of CHDs and their clinical course during life. Candidate approaches implied that DNA methylation might have a developmental role in CHD and contributes to the long-term progress of non-structural cardiac diseases. The aim of the present study is to define the postnatal epigenome of two common cardiac malformations, representing epigenetic memory, and adaption to hemodynamic alterations, which are jointly relevant for the disease course.We present the first analysis of genome-wide DNA methylation data obtained from myocardial biopsies of Tetralogy of Fallot (TOF) and ventricular septal defect patients. We defined stringent sets of differentially methylated regions between patients and controls, which are significantly enriched for genomic features like promoters, exons, and cardiac enhancers. For TOF, we linked DNA methylation with genome-wide expression data and found a significant overlap for hypermethylated promoters and down-regulated genes, and vice versa. We validated and replicated the methylation of selected CpGs and performed functional assays. We identified a hypermethylated novel developmental CpG island in the promoter of SCO2 and demonstrate its functional impact. Moreover, we discovered methylation changes co-localized with novel, differential splicing events among sarcomeric genes as well as transcription factor binding sites. Finally, we demonstrated the interaction of differentially methylated and expressed genes in TOF with mutated CHD genes in a molecular network.By interrogating DNA methylation and gene expression data, we identify two novel mechanism contributing to the phenotypic expression of CHDs: aberrant methylation of promoter CpG islands and methylation alterations leading to differential splicing. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.


July 19, 2019  |  

Prediction of smoking by multiplex bisulfite PCR with long amplicons considering allele-specific effects on DNA methylation.

Methylation of DNA is associated with a variety of biological processes. With whole-genome studies of DNA methylation, it became possible to determine a set of genomic sites where DNA methylation is associated with a specific phenotype. A method is needed that allows detailed follow-up studies of the sites, including taking into account genetic information. Bisulfite PCR is a natural choice for this kind of task, but multiplexing is one of the most important problems impeding its implementation. To address this task, we took advantage of a recently published method based on Pacbio sequencing of long bisulfite PCR products (single-molecule real-time bisulfite sequencing, SMRT-BS) and tested the validity of the improved methodology with a smoking phenotype.Herein, we describe the “panhandle” modification of the method, which permits a more robust PCR with multiple targets. We applied this technique to determine smoking by DNA methylation in 71 healthy people and 83 schizophrenia patients (n?=?50 smokers and n?=?104 non-smokers, Russians of the Moscow region). We used five targets known to be influenced by smoking (regions of genes AHRR, ALPPL2, IER3, GNG12, and GFI1). We discovered significant allele-specific methylation effects in the AHRR and IER3 regions and assessed how this information could be exploited to improve the prediction of smoking based on the collected DNA methylation data. We found no significant difference in the methylation profiles of selected targets in relation to schizophrenia suggesting that smoking affects methylation at the studied genomic sites in healthy people and schizophrenia patients in a similar way.We determined that SMRT-BS with “panhandle” modification performs well in the described setting. Additional information regarding methylation and allele-specific effects could improve the predictive accuracy of DNA methylation-based models, which could be valuable for both basic research and clinical applications.


July 7, 2019  |  

DNA methylation profiling using long-read Single Molecule Real-Time bisulfite sequencing (SMRT-BS).

For the past two decades, bisulfite sequencing has been a widely used method for quantitative CpG methylation detection of genomic DNA. Coupled with PCR amplicon cloning, bisulfite Sanger sequencing allows for allele-specific CpG methylation assessment; however, its time-consuming protocol and inability to multiplex has recently been overcome by next-generation bisulfite sequencing techniques. Although high-throughput sequencing platforms have enabled greater accuracy in CpG methylation quantitation as a result of increased bisulfite sequencing depth, most common sequencing platforms generate reads that are similar in length to the typical bisulfite PCR size range (~300-500 bp). Using the Pacific Biosciences (PacBio) sequencing platform, we developed single molecule real-time bisulfite sequencing (SMRT-BS), which is an accurate targeted CpG methylation analysis method capable of a high degree of multiplexing and long read lengths. SMRT-BS is reproducible and was found to be concordant with other lower throughput quantitative CpG methylation methods. Moreover, the ability to sequence up to ~1.5-2.0 kb amplicons, when coupled with an optimized bisulfite-conversion protocol, allows for more thorough assessment of CpG islands and increases the capacity for studying the relationship between single nucleotide variants and allele-specific CpG methylation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.