Menu
July 7, 2019  |  

Iteratively improving natamycin production in Streptomyces gilvosporeus by a large operon-reporter based strategy

Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Selvamicin, an atypical antifungal polyene from two alternative genomic contexts.

The bacteria harbored by fungus-growing ants produce a variety of small molecules that help maintain a complex multilateral symbiosis. In a survey of antifungal compounds from these bacteria, we discovered selvamicin, an unusual antifungal polyene macrolide, in bacterial isolates from two neighboring ant nests. Selvamicin resembles the clinically important antifungals nystatin A1 and amphotericin B, but it has several distinctive structural features: a noncationic 6-deoxymannose sugar at the canonical glycosylation site and a second sugar, an unusual 4-O-methyldigitoxose, at the opposite end of selvamicin’s shortened polyene macrolide. It also lacks some of the pharmacokinetic liabilities of the clinical agents and appears to have a different target. Whole genome sequencing revealed the putative type I polyketide gene cluster responsible for selvamicin’s biosynthesis including a subcluster of genes consistent with selvamicin’s 4-O-methyldigitoxose sugar. Although the selvamicin biosynthetic cluster is virtually identical in both bacterial producers, in one it is on the chromosome, in the other it is on a plasmid. These alternative genomic contexts illustrate the biosynthetic gene cluster mobility that underlies the diversity and distribution of chemical defenses by the specialized bacteria in this multilateral symbiosis.


July 7, 2019  |  

The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6.

Botrydial (BOT) is a non-host specific phytotoxin produced by the polyphagous phytopathogenic fungus Botrytis cinerea. The genomic region of the BOT biosynthetic gene cluster was investigated and revealed two additional genes named Bcbot6 and Bcbot7. Analysis revealed that the G+C/A+T-equilibrated regions that contain the Bcbot genes alternate with A+T-rich regions made of relics of transposable elements that have undergone repeat-induced point mutations (RIP). Furthermore, BcBot6, a Zn(II)2Cys6 putative transcription factor was identified as a nuclear protein and the major positive regulator of BOT biosynthesis. In addition, the phenotype of the ?Bcbot6 mutant indicated that BcBot6 and therefore BOT are dispensable for the development, pathogenicity and response to abiotic stresses in the B. cinerea strain B05.10. Finally, our data revealed that B. pseudocinerea, that is also polyphagous and lives in sympatry with B. cinerea, lacks the ability to produce BOT. Identification of BcBot6 as the major regulator of BOT synthesis is the first step towards a comprehensive understanding of the complete regulation network of BOT synthesis and of its ecological role in the B. cinerea life cycle. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens.

Bacillus amyloliquefaciens subsp. plantarum S499 is a plant beneficial rhizobacterium with a good antagonistic potential against phytopathogens through the release of active secondary metabolites. Moreover, it can induce systemic resistance in plants by producing considerable amounts of surfactins. The complete genome sequence of B. amyloliquefaciens subsp. plantarum S499 includes a circular chromosome of 3,927,922bp and a plasmid of 8,008bp. A remarkable abundance in genomic regions of putative horizontal origin emerged from the analysis. Furthermore, we highlighted the presence of genes involved in the establishment of interactions with the host plants at the root level and in the competition with other soil-borne microorganisms. More specifically, genes related to the synthesis of amylolysin, amylocyclicin, and butirosin were identified. These antimicrobials were not known before to be part of the antibiotic arsenal of the strain. The information embedded in the genome will support the upcoming studies regarding the application of B. amyloliquefaciens isolates as plant-growth promoters and biocontrol agents. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

High-quality draft genome sequence of the actinobacterium Nocardia terpenica IFM 0406, producer of the immunosuppressant brasilicardins, using Illumina and PacBio technologies.

The bacterium Nocardia terpenica IFM 0406 is known as the producer of the immunosuppressant brasilicardin A. Here, we report the completely sequenced genome of strain IFM 0406, which facilitates the heterologous expression of the brasilicardin biosynthetic gene cluster but also unveils the intriguing biosynthetic capacity of the strain to produce secondary metabolites. Copyright © 2016 Buchmann et al.


July 7, 2019  |  

Identification of the fluvirucin B2 (Sch 38518) biosynthetic gene cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate specificity of the ß-amino acid selective adenylating enzyme FlvN.

Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the ß-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the ß-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic ß-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a ß-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as ß-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2.


July 7, 2019  |  

Genomics-inspired discovery of three antibacterial active metabolites, aurantinins B, C, and D from compost-associated Bacillus subtilis fmb60.

Fmb60 is a wild-type Bacillus subtilis isolated from compost with significant broad-spectrum antimicrobial activities. Two novel PKS clusters were recognized in the genome sequence of fmb60, and then three polyene antibiotics, aurantinins B, C, and D, 1-3, were obtained by bioactivity-guided isolation from the fermentation of fmb60. The structures of aurantinins B-D were elucidated by LC-HRMS and NMR data analysis. Aurantinins C and D were identified as new antimicrobial compounds. The three aurantinins showed significant activity against multidrug-resistant Staphylococcus aureus and Clostridium sporogenes. However, aurantinins B-D did not exhibit any cytotoxicity (IC50 > 100 µg/mL) against LO2 and Caco2 cell lines by MTT assay. Furthermore, using S. aureus as a model bacterium to explore the antibacterial mechanism of aurantinins B-D, it was revealed that the bactericidal activity of aurantinins B-D was related to their ability to disrupt the cell membrane.


July 7, 2019  |  

Auroramycin, a potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation.

Silent biosynthetic gene clusters represent a potentially rich source for new bioactive compounds. We report the discovery, characterization and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of aminosugars. Relative and absolute stereochemistry were determined using a combination of spectroscopic analyses, chemical derivatization, and computational analysis. The activated gene cluster for auroramycin production was also verified by transcriptional analyses and gene deletions. Finally, auroramycin exhibited potent anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity towards clinical drug-resistant isolates.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.