X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Genome sequence of the alkaline-tolerant Cellulomonas sp. strain FA1.

We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production. Copyright © 2015 Cohen et al.

Read More »

Sunday, July 7, 2019

Genome sequence of Halomonas sp. strain KO116, an ionic liquid-tolerant marine bacterium isolated from a lignin-enriched seawater microcosm.

Halomonas sp. strain KO116 was isolated from Nile Delta Mediterranean Sea surface water enriched with insoluble organosolv lignin. It was further screened for growth on alkali lignin minimal salts medium agar. The strain tolerates the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its complete genome sequence is presented in this report. Copyright © 2015 O’Dell et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72°C, Geobacillus LC300 has a growth rate of 2.15h(-1) on glucose and 1.52h(-1) on xylose (doubling time less than 30min). The corresponding specific glucose and xylose utilization rates are 5.55g/g/h and 5.24g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of…

Read More »

Sunday, July 7, 2019

The genus Brachypodium as a model for perenniality and polyploidy

The genus Brachypodium contains annual and perennial species with both diploid and polyploid genomes. Like the annual species B. distachyon, some of the perennial and polyploid species have traits compatible with use as a model system (e.g. small genomes, rapid generation time, self-fertile and easy to grow). Thus, there is an opportunity to leverage the resources and knowledge developed for B. distachyon to use other Brachypodium species as models for perenniality and the regulation and evolution of polyploid genomes. There are two factors driving an increased interest in perenniality. First, several perennial grasses are being developed as biomass crops for…

Read More »

Sunday, July 7, 2019

Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

Tolumonas lignolytica BRL6-1(T) sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1(T) are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as several enzymes involved…

Read More »

Sunday, July 7, 2019

Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth.

Biodiesel production results in crude glycerol waste from the transesterification of fatty acids (10 % w/w). The solventogenic Clostridium pasteurianum, an anaerobic Firmicute, can produce butanol from glycerol as the sole carbon source. Coupling butanol fermentation with biodiesel production can improve the overall economic viability of biofuels. However, crude glycerol contains growth-inhibiting byproducts which reduce feedstock consumption and solvent production.To obtain a strain with improved characteristics, a random mutagenesis and directed evolution selection technique was used. A wild-type C. pasteurianum (ATCC 6013) culture was chemically mutagenized, and the resulting population underwent 10 days of selection in increasing concentrations of crude glycerol (80-150 g/L).…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate.

We determined the genome sequence of a thermotolerant yeast, Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate, and the sequence provides further insights into the genomic differences between this strain and other reported K. marxianus strains. The genome described here is composed of 11,165,408 bases and has 4,943 protein-coding genes. Copyright © 2014 Suzuki et al.

Read More »

Sunday, July 7, 2019

Improved draft genome sequence of Clostridium pasteurianum strain ATCC 6013 (DSM 525) using a hybrid next-generation sequencing approach.

We present an improved draft genome sequence for Clostridium pasteurianum strain ATCC 6013 (DSM 525), the type strain of the species and an important solventogenic bacterium with industrial potential. Availability of a near-complete genome sequence will enable strain engineering of this promising bacterium. Copyright © 2014 Pyne et al.

Read More »

Sunday, July 7, 2019

Genomics of wood-degrading fungi.

Woody plants convert the energy of the sun into lignocellulosic biomass, which is an abundant substrate for bioenergy production. Fungi, especially wood decayers from the class Agaricomycetes, have evolved ways to degrade lignocellulose into its monomeric constituents, and understanding this process may facilitate the development of biofuels. Over the past decade genomics has become a powerful tool to study the Agaricomycetes. In 2004 the first sequenced genome of the white rot fungus Phanerochaete chrysosporium revealed a rich catalog of lignocellulolytic enzymes. In the decade that followed the number of genomes of Agaricomycetes grew to more than 75 and revealed a…

Read More »

Sunday, July 7, 2019

Expansion of the genetic toolkit for metabolic engineering of Clostridium pasteurianum: chromosomal gene disruption of the endogenous CpaAI restriction enzyme.

Clostridium pasteurianum is one of the most promising biofuel producers within the genus Clostridium owing to its unique metabolic ability to ferment glycerol into butanol. Although an efficient means is available for introducing foreign DNA to C. pasteurianum, major genetic tools, such as gene knockout, knockdown, or genome editing, are lacking, preventing metabolic engineering of C. pasteurianum.Here we present a methodology for performing chromosomal gene disruption in C. pasteurianum using the programmable lactococcus Ll.ltrB group II intron. Gene disruption was initially found to be impeded by inefficient electrotransformation of Escherichia coli-C. pasteurianum shuttle vectors, presumably due to host restriction. By…

Read More »

Sunday, July 7, 2019

Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production.

Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organism…

Read More »

Sunday, July 7, 2019

Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

In 2010, when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy’s Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and…

Read More »

Sunday, July 7, 2019

The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms.

Tung tree (Vernicia fordii) is an economically important tree widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized its genome using PacBio RS II sequencing platforms. The chloroplast genome was sequenced with 161,528?bp in length, composed with one pair of inverted repeats (IRs) of 26,819?bp, which were separated by one small single copy (SSC; 18,758?bp) and one large single copy (LSC; 89,132?bp). The genome contains 114 genes, coding for 81 protein, four ribosomal RNAs and 29 transfer RNAs. An expansion with integration of an additional rps19 gene…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives